Selenocystine Peptides Performance in 5-endo-dig Reactions
Sindija Lapcinska
Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., 1006 Riga, Latvia
Search for more papers by this authorCorresponding Author
Pavel Arsenyan
Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., 1006 Riga, Latvia
Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., Riga, 1006, Latvia
E-mail: [email protected]
http://osi.lv/en/laboratories/pharmacomodulators-synthesis-group/
Search for more papers by this authorSindija Lapcinska
Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., 1006 Riga, Latvia
Search for more papers by this authorCorresponding Author
Pavel Arsenyan
Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., 1006 Riga, Latvia
Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., Riga, 1006, Latvia
E-mail: [email protected]
http://osi.lv/en/laboratories/pharmacomodulators-synthesis-group/
Search for more papers by this authorGraphical Abstract
Copper(II) bromide and oxidant promoted 5-endo-dig and 5-endo-dig/6-endo-dig cascade reactions are presented. Substituted benzo[b]furans, indoles, and indeno[1,2-c]chromenes bearing Sec-peptides in position 3 were prepared. This procedure can be successfully applied for protected and unprotected peptides obtained in up to quantitative yields.
Abstract
Herein, we present methods for the generation of selenocysteinyl electrophile by weak Lewis acids or oxidants. The electrophilic selenium species were further utilized in 5-endo-dig cyclization reactions with 2-ethynyl phenols, anisoles, and anilines, yielding substituted benzo[b]furans and indoles bearing short selenocysteine-containing peptides. Copper(II) bromide promoted 5-endo-dig cyclization can be successfully applied for protected and unprotected peptides in high yields. Elaborated protocol allows the construction of phenylindeno[1,2-c]chromene moiety in 5-endo-dig/6-endo-dig cascade reactions.
Supporting Information
Filename | Description |
---|---|
ejoc201901548-sup-0001-SupMat.pdf8.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. J. Nevagi, S. N. Dighe and S. N. Dighe, Eur. J. Med. Chem, 2015, 97, 561–581.
- 2N. K. Kaushik, N. Kaushik, P. Attri, N. Kumar, C. H. Kim, A. K. Verma and E. H. Choi, Molecules, 2013, 18, 6620–6662.
- 3T. P. Singh and O. M. Singh, Mini-Rev. Med. Chem, 2018, 18, 9–25.
- 4H. Khanam and Shamsuzzama, Eur. J. Med. Chem, 2015, 97, 483–504.
- 5M. E. Welsch, S. A. Snyder and B. R. Stockwell, Curr. Opin. Chem. Biol, 2010, 14, 347–361.
- 6H. Li, X. Wang and J. Yan, Appl. Organomet. Chem, 2017, 31, 3864–3869.
- 7N. L. Ferreira, J. B. Azeredo, B. L. Fiorentin and A. L. Braga, Eur. J. Org. Chem, 2015, 5070–5074.
- 8C. D. Prasad, S. Kumar, M. Sattar, A. Adhikary and S. Kumar, Org. Biomol. Chem, 2013, 11, 8036–8040.
- 9G. Kibriya, S. Samanta, M. Singsardar, S. Jana and A. Hajra, Eur. J. Org. Chem, 2017, 21, 3055–3058.
- 10T. Guo, Z. Dong, P. Zhang, W. Xing and L. Li, Tetrahedron Lett, 2018, 59, 2554–2558.
- 11A. Ivanova and P. Arsenyan, Coord. Chem. Rev, 2018, 370, 55–68.
- 12D. Yue, T. Yao and R. C. Larock, J. Org. Chem, 2005, 70, 10292–10296.
- 13Y. Chen, C. H. Cho, F. Shi and R. C. Larock, J. Org. Chem, 2009, 74, 6802–6811.
- 14M. Xu, X. H. Zhang and P. Zhong, Tetrahedron Lett, 2011, 52, 6800–6804.
- 15X. A. Du, R. Y. Tang, C. L. Deng, Y. Liu, J. H. Li and X. G. Zhang, Adv. Synth. Catal, 2011, 353, 2739–2748.
- 16Z. Li, L. Hong, R. Liu, J. Shen and X. Zhou, Tetrahedron Lett, 2011, 52, 1343–1347.
- 17J. C. Kazmierczak, A. M. S. Recchi, F. Gritzenco, E. B. Balbom, T. Barcellos, A. Sperança and B. Godoi, Eur. J. Org. Chem, 2017, 6382–6389.
- 18R. M. Gay, F. Manarin, C. C. Schneider, D. A. Barancelli, M. D. Costa and G. Zeni, J. Org. Chem, 2010, 75, 5701–5706.
- 19A. Sperança, B. Godoi, P. H. Menezes and G. Zeni, Synlett, 2013, 24, 1125–1132.
- 20G. Perin, L. K. Soares, P. S. Hellwig, M. S. Silva, J. S. S. Neto, J. A. Roehrs, T. Barcellos and E. J. Lenardão, New J. Chem, 2019, 43, 6323–6331.
- 21D. T. Cohen, C. Zhang, B. L. Pentelute and S. L. Buchwald, J. Am. Chem. Soc, 2015, 137, 9784–9787.
- 22D. T. Cohen, C. Zhang, C. M. Fadzen, A. J. Mijalis, L. Hie, K. D. Johnson, Z. Shriver, O. Plante, S. J. Miller, S. L. Buchwald and B. L. Pentelute, Nat. Chem, 2019, 11, 78–85.
- 23H. J. Reich and R. J. Hondal, ACS Chem. Biol, 2016, 11, 821–841.
- 24E. S. J. Arnér, Exp. Cell Res, 2010, 316, 1296–1303.
- 25P. Arsenyan, S. Lapcinska, A. Ivanova and J. Vasiljeva, Eur. J. Org. Chem, 2019, 4951–4961.
- 26H. J. Forman, H. Zhang and A. Rinna, Mol. Aspects Med, 2009, 30, 1–12.
- 27C. Santi and S. Santoro, in: Organoselenium Chemistry: Synthesis and Reactions; T. Wirth, Wiley-VCH, Weinheim, Germany, 2011.
- 28M. Tiecco, L. Testaferri, L. Tingoli, D. Chianelli and D. Bartoli, Tetrahedron Lett, 1989, 30, 1417–1420.
- 29C. D. Prasad, S. J. Balkrishna, A. Kumar, B. S. Bhakuni, K. Shrimali, S. Biswas and S. Kumar, J. Org. Chem, 2013, 78, 1434–1443.
- 30M. Tiecco, L. Testaferri, M. Tingoli and D. Bartoli, J. Org. Chem, 1990, 55, 4523–4528.
- 31M. Tiecco, L. Testaferri, M. Tingoli, L. Bagnoli and F. Marini, J. Chem. Soc., Perkin Trans. 1, 1993, 1989–1993.
- 32P. Scheerer, A. Borchert, N. Krauss, H. Wessner, C. Gerth, W. Hohne and H. Kuhn, Biochemistry, 2007, 46, 9041–9049.
- 33N. Majumdar, N. D. Paul, S. Mandal, B. Bruin and W. D. Wulff, ACS Catal, 2015, 5, 2329–2366.
- 34H. Jiang, G. Ferrara, X. Zhang, K. Oniwa, A. Islam, L. Han, Y.-J. Sun, M. Bao, N. Asao, Y. Yamamoto and T. Jin, Chem. Eur. J, 2015, 21, 4065–4070.
- 35C.-C. Chen, M.-Y. Wu, H.-Y. Chen and M.-J. Wu, J. Org. Chem, 2017, 82, 6071–6081.
- 36O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr, 2009, 42, 339–341.
- 37L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, Acta Crystallogr., Sect. A, 2015, 71, 59–75.
- 38G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3–8.
- 39L. Pedzisa, X. Li, C. Rader and W. R. Roush, Org. Biomol. Chem, 2016, 14, 5141–5147.
- 40G. K. Thakur and G. Sekar, Synthesis, 2009, 2785–2789.
- 41C. Shu, R. Liu, S. Liu, J.-Q. Li, Y.-F. Yu, Q. He, X. Lu and L.-W. Ye, Chem. Asian J, 2014, 10, 91–95.
- 42E. Lee, T. Ryu, Y. Park, S. Park and P. H. Lee, Adv. Synth. Catal, 2013, 355, 1585–1596.
- 43Z. Shen and X. Lu, Adv. Synth. Catal, 2009, 351, 3107–3112.
- 44A. Bruneau, K. P. J. Gustafson, N. Yuan, C.-W. Tai, I. Persson, X. Zou and J.-E. Bäckval, Chem. Eur. J, 2017, 23, 12886–12891.
- 45J. Hou, A. Ee, W. Feng, J.-H. Xu, Y. Zhao and J. Wu, J. Am. Chem. Soc, 2018, 140, 5257–5263.
- 46Y.-Y. Chen, J. Chen, N. Zhang, L. Ye, X.-J. Zhang and M. Yan, Tetrahedron Lett, 2015, 56, 478–481.
- 47M. Nakamura, L. Ilies, S. Otsubo and E. Nakamura, Angew. Chem. Int. Ed, 2006, 45, 944–947;
Angew. Chem, 2006, 118, 958.
10.1002/ange.200502920 Google Scholar