Stereoselective Mannich Reaction of α-Acetoxy-β-keto Esters with Isatin Imine: An Efficient Access to Vicinal Tetra-Substituted Stereocenters
Dr. Jasneet Kaur
Department of Chemistry Khalsa College, Amritsar, 143001 India
Search for more papers by this authorBanni Preet Kaur
Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry, Guru Nanak Dev University, Amritsar, 143005 India
Search for more papers by this authorDr. Nasarul Islam
Department of Chemistry, Govt. Degree College, Bandipora, 193502 India
Search for more papers by this authorPankaj Chauhan
Department of Chemistry, Indian Institute of Technology Jammu, Jagti PO Nagrota, NH-44, Jammu, 181 221 India
Search for more papers by this authorCorresponding Author
Dr. Swapandeep Singh Chimni
Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry, Guru Nanak Dev University, Amritsar, 143005 India
Search for more papers by this authorDr. Jasneet Kaur
Department of Chemistry Khalsa College, Amritsar, 143001 India
Search for more papers by this authorBanni Preet Kaur
Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry, Guru Nanak Dev University, Amritsar, 143005 India
Search for more papers by this authorDr. Nasarul Islam
Department of Chemistry, Govt. Degree College, Bandipora, 193502 India
Search for more papers by this authorPankaj Chauhan
Department of Chemistry, Indian Institute of Technology Jammu, Jagti PO Nagrota, NH-44, Jammu, 181 221 India
Search for more papers by this authorCorresponding Author
Dr. Swapandeep Singh Chimni
Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry, Guru Nanak Dev University, Amritsar, 143005 India
Search for more papers by this authorGraphical Abstract
Synthesis of optically active 3-substituted-3-aminooxindoles containing vicinal quaternary stereogenic centers was achieved using a quinine thiourea organocatalyst. α-Acetoxy-β-keto esters have been introduced as nucleophiles to undergo Mannich reaction with isatin imines for asymmetric organocatalysis.
Abstract
A highly diastereo- and enantioselective Mannich reaction of α-acetoxy-β-keto esters with isatin imine was developed. The quinine thiourea organocatalyst smoothly promoted the asymmetric Mannich reaction to furnish various 3-substituted-3-aminooxindole derivatives bearing two adjacent tetra-substituted stereocenters in up to 93 % yield, up to 98 % ee with >20 : 1 dr. The transition state structure and absolute configuration of the obtained product were predicted using DFT calculations, and results from single crystal X-ray analysis are in agreement with the DFT studies.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ejoc202101047-sup-0001-misc_information.pdf5.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Shimizu, T. Tsubogo, P. Xu, S. Kobayashi, Org. Lett. 2015, 178, 2006–2009;
- 1bY. Liu, S.-J. Han, W.-B. Liu, B. M. Stoltz, Acc. Chem. Res. 2015, 17, 740–751;
- 1cP. H. Poulsen, K. S. Feu, B. M. Paz, F. Jensen, K. A. Jørgensen, Angew. Chem. Int. Ed. 2015, 54, 8203–8207;
Angew. Chem. 2015, 127, 8321–8325;
10.1002/ange.201503370 Google Scholar
- 1dJ. J. Murphy, A. Quintard, P. McArdle, A. Alexakis, J. C. Stephens, Angew. Chem. Int. Ed. 2011, 50, 5095–5098;
Angew. Chem. 2011, 123, 5201–5204;
10.1002/ange.201100804 Google Scholar
- 1eM. Silvi, I. Chatterjee, Y. Liu, P. Melchiorre, Angew. Chem. Int. Ed. 2013, 52, 10780–10783;
Angew. Chem. 2013, 125, 10980–10983;
10.1002/ange.201305870 Google Scholar
- 1fA. Parra, M. Tortosa, ChemCatChem. 2015, 7, 1524–1526;
- 1gK. Zhao, Y. Zhi, T. Shu, A. Valkonen, K. Rissanen, D. Enders, Angew. Chem. Int. Ed. 2016, 55, 12104–12108;
Angew. Chem. 2016, 128, 12283–12287;
10.1002/ange.201606947 Google Scholar
- 1hY.-H. Deng, X.-Z. Zhang, K.-Y. Yu, X. Yan, J.-Y. Du, H. Huang, C.-A. Fan, Chem. Commun. 2016, 52, 4183–4186.
- 2
- 2aP. Zhang, Q. Huang, Y. Cheng, R. Li, P. Li, W. Li, Org. Lett. 2019, 21, 503–507;
- 2bR. Ding, Z. A. Santos, C. Wolf, ACS Catal. 2019, 9, 2169–2176;
- 2cY. Luan, A. Huang, Y. Cheng, X. Liu, P. Li, W. Li, Adv. Synth. Catal. 2019, 361, 4208–4214;
- 2dP. Tong, Y. Li, Y. Zhang, X. Jiang, Asian J. Chem. 2019, 8, 492–495;
- 2eG. Wu, H. Xu, Z. Liu, X. Yang, X. Zhang, Y. Huang, Org. Lett. 2019, 21, 7708–7712;
- 2fH. Hu, J. Xu, W. Liu, S. Dong, L. Lin, X. Feng, Org. Lett. 2018, 20, 5601–5605;
- 2gJ. Zhao, X. Ren, B. Zheng, J. Ji, Z. Qiu, Y. Li, Tetrahedron Lett. 2018, 59, 2091–2094.
- 3
- 3aS. A. Chavez, A. J. Martinko, C. Lau, M. N. Pham, K. Cheng, D. E. Bevan, T. E. Mollnes, H. Yin, J. Med. Chem. 2011, 54, 4659–4669;
- 3bP. Gupta, N. Mahajan, New J. Chem. 2018, 42, 12296–12327.
- 4
- 4aC. BeceÇo, P. Chauhan, A. Rembiak, A. Wang, D. Enders, Adv. Synth. Catal. 2015, 357, 672–676;
- 4bT. Liu, W. Liu, X. Li, F. Peng, Z. Shao, J. Org. Chem. 2015, 80, 4950–4956;
- 4cA. Kumar, V. Sharma, J. Kaur, N. Kumar, S. S. Chimni, Org. Biomol. Chem. 2015, 13, 5629–5635;
- 4dA. Kumar, J. Kaur, S. S. Chimni, RSC Adv. 2014, 4, 24816–24819;
- 4eX. Bao, B. Wang, L. Cui, G. Zhu, Y. He, J. Qu, Y. Song, Org. Lett. 2015, 17, 5168–5171;
- 4fK. Zhao, Y. Zhi, X. Li, R. Puttreddy, K. Rissanen, D. Enders, Chem. Commun. 2016, 52, 2249–2252;
- 4gP. Cheng, W. Guo, P. Chen, Y. Liu, X. Du, C. Li, Chem. Commun. 2016, 52, 3418–3421;
- 4hY. Yoshida, M. Sako, K. Kishi, H. Sasai, S. Hatakeyama, S. Takizawa, Org. Biomol. Chem. 2015, 13, 9022–9028;
- 4iY. Zhu, Y. Li, Q. Meng, X. Li, Org. Chem. Front. 2016, 3, 709–713;
- 4jO. D. Engl, S. P. Fritz, H. Wennemers, Angew. Chem. Int. Ed. 2015, 54, 8193–8197;
Angew. Chem. 2015, 127, 8311–8315.
10.1002/ange.201502976 Google Scholar
- 5For a comprehensive review on catalytic asymmetric synthesis of 3-amino-2-oxindoles see:
- 5aP. Chauhan, S. S. Chimni, Tetrahedron: Asymmetry 2013, 24, 343–356;
- 5bJ. Kaur, A. Kumar, S. S. Chimni, S. Mahajan, RSC Adv. 2015, 5, 52481–52496;
- 5cJ. S. You, F. Zhou, Y. L. Liu, J. Zhou, Synlett 2015, 26, 2491–2504;
- 5dH. Pellissier, Beilstein J. Org. Chem. 2018, 14, 1349–1369;
- 5eJ. Kaur, S. S. Chimni, Org. Biomol. Chem. 2018, 16, 3328–3347.
- 6
- 6aT. Hashimoto, K. Sasaki, K. Fukumoto, Y. Murase, N. Abe, T. Ooi, K. Maruoka, Chem. Asian J. 2010, 5, 562–570;
- 6bT. Hashimoto, K. Sasaki, K. Fukumoto, Y. Murase, T. Ooi, K. Maruoka, Synlett 2009, 4, 661–663.
- 7
- 7aM. Franc, M. Urban, I. Císařová, J. Veselý, Org. Biomol. Chem. 2019, 17, 7309–7314;
- 7bT. Nanjo, X. Zhang, Y. Tokuhiro, Y. Takemoto, ACS Catal. 2019, 9, 10087–10092;
- 7cF. Li, W. Pei, J. Wang, J. Liu, J. Wang, M. Zhang, Z. Chen, L. Liu, Org. Chem. Front. 2018, 5, 1342–1347;
- 7dS. Kuwano, T. Suzuki, Y. Hosaka, T. Arai, Chem. Commun. 2018, 54, 3847–3850;
- 7eS. Mukhopadhyaya, S. C. Pan, Org. Biomol. Chem. 2018, 16, 5407–5411;
- 7fB. Ray, S. J. S. Roy, S. Mukherjee, Asian J. Chem. 2019, 8, 1045–1048;
- 7gA. Kumari, J. Kaur, V. K. Bhardwaj, S. S. Chimni, Eur. J. Org. Chem. 2018, 4081–4088,
- 7hJ. Kaur, A. Kumar, S. S. Chimni, Tetrahedron Lett. 2014, 55, 2138–2141,
- 7iV. Sharma, V. K. Bhardwaj, S. S. Chimni, ChemistrySelect 2018, 3, 5348–5352.
- 8A. Kumar, V. Sharma, J. Kaur, V. Kumar, S. Mahajan, N. Kumar, S. S. Chimni, Tetrahedron 2014, 70, 7044–7049.
- 9Deposition Number 2103692 (for 3za) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 10Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 11
- 11aT. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119–125;
- 11bJ. S. Oh, J. W. Lee, T. H. Ryu, J. H. Lee, C. E. Song, Org. Biomol. Chem. 2012, 10, 1052–1055.
- 12W. Yan, D. Wang, J. Feng, P. Li, D. Zhao, R. Wang, Org. Lett. 2012, 14, 2512–2515.
- 13
- 13aP. V. Balaji, L. Brewitz, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2019, 58, 2644–2648;
Angew. Chem. 2019, 131, 2670–2674;
10.1002/ange.201812673 Google Scholar
- 13bZ. Zheng, J. Lin, Y. Sun, S. Zhang, Tetrahedron Lett. 2020, 61, 151382;
- 13cM. Bai, Y. Z. Chen, B. D. Cui, X. Y. Xu, W. C. Yuan, Tetrahedron 2019, 75, 2155–2161;
- 13dB. Bhaskararao, R. B. Sunoj, Chem. Sci. 2018, 9, 8738–8747;
- 13eJ. Wen, J. Jiang, X. Zhang, Org. Lett. 2016, 18, 4451–4453.
- 14M. A. -Urquijo, A. Gehre, S. P. Stanforth, B. Tarbit, Tetrahedron 2009, 65, 975–984.
- 15
- 15aB. Vakulya, S. Varga, A. Csampaid, T. Soos, Org. Lett. 2005, 7, 1967–1969,
- 15bW. Yang, D.-M. Du, Org. Lett. 2010, 12, 5450–5453.