Zwitterionic Aromaticity on Azulene Extrapolated to carbo-Azulene
Corresponding Author
Dr. Jordi Poater
Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, 08028 Barcelona, Spain
ICREA, 08010 Barcelona, Spain
Search for more papers by this authorJuliane Heitkämper
Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Dr. Albert Poater
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorDr. Valérie Maraval
LCC-CNRS, University of Toulouse, 205 route de Narbonne, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Remi Chauvin
LCC-CNRS, University of Toulouse, 205 route de Narbonne, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Dr. Jordi Poater
Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, 08028 Barcelona, Spain
ICREA, 08010 Barcelona, Spain
Search for more papers by this authorJuliane Heitkämper
Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Dr. Albert Poater
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorDr. Valérie Maraval
LCC-CNRS, University of Toulouse, 205 route de Narbonne, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Remi Chauvin
LCC-CNRS, University of Toulouse, 205 route de Narbonne, 31077 Toulouse, France
Search for more papers by this authorIn memory of Klaus Hafner
Graphical Abstract
DFT unveils inverse orientations of the dipole moments of azulene and carbo-azulene and their “zwitterionic aromatic” character, following the Hückel rule for monocycles within the bicycles. Local aromaticity indices for the two rings, with 5 and 7 C−C bonds in azulene or C−C2−C edges in carbo-azulene show the independence of size on qualitative π-electronic properties.
Abstract
Azulene is stabilized by “zwitterionic aromaticity”, what about its ring carbo-mer? The greater dipole moment of the latter is oriented in the opposite direction, while providing an enhanced zwitterionic aromatic character. Comparison of local aromaticity indices for the two rings, with 5 and 7 C−C bonds in azulene or C−C2−C edges in carbo-azulene, allows analysis of the quasi-independent influence of size on the π-electronic properties of these aromatic bicyclic molecules exhibiting quasi-identical shapes and π-resonance schemes between their common set of sp2C−H vertices. The electrostatic features of such dipolar hydrocarbons are also analyzed by comparison with their respective radical cation and anion, and with their apolar bicyclic isomer, naphthalene and carbo-naphthalene.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ejoc202101228-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Faraday, Philos. Trans. R. Soc. 1825, 115, 440–466.
10.1098/rstl.1825.0022 Google Scholar
- 2A. R. Katritzky, P. Barczynski, G. Musumarra, D. Pisano, M. Szafran, J. Am. Chem. Soc. 1989, 111, 7–15.
- 3E. Hückel, Z. Phys. 1931, 70, 204–286.
- 4
- 4aR. C. Haddon, J. Am. Chem. Soc. 1979, 101, 1722–1728;
- 4bF. Feixas, E. Matito, M. Solà, J. Poater, J. Phys. Chem. A 2008, 112, 13231–13238.
- 5F. Feixas, E. Matito, J. Poater, M. Solà, Chem. Soc. Rev. 2015, 44, 6434–6451.
- 6
- 6aW. T. Brande, Quarterly J. Sci. 1819, 8, 287–290;
- 6bJ. M. D. Kidd, Philos. Trans. R. Soc. 1821, 111, 209–221.
10.1098/rstl.1821.0017 Google Scholar
- 7J. Aihara, J. Am. Chem. Soc. 1977, 99, 2048–2053.
- 8References 33–34 by S. Piesse, in
- 8aH. J. Hansen, Chimia 1996, 50, 489–496;
- 8bA. E. Sherndal, J. Am. Chem. Soc. 1915, 37, 1537–1544.
- 9T. Shoji, S. Ito, Adv. Heterocycl. Chem. 2018, 126, 1–54.
- 10
- 10aK. Ziegler, K. Hafner, Angew. Chem. 1955, 67, 301–302;
- 10bK. Hafner, Liebigs Ann. Chem. 1979, 66, 79–89;
- 10cK. Hafner, K.-P. Meinhardt, Org. Synth. 1984, 62, 134–137.
- 11T. Nozoe, S. Seto, S. Matsumura, Y. Murase, Bull. Chem. Soc. Jpn. 1962, 35, 1179–1188.
- 12T. Okazaki, K. K. Laali, Org. Biomol. Chem. 2003, 1, 3078–3093.
- 13A. G. Anderson Jr, B. M. Steckler, J. Am. Chem. Soc. 1959, 115, 4941–4946.
- 14A neutral closed-shell molecule admitting at least one all-octet Kekulé structure (thus excluding diradical forms) can be said to exhibit “zwitterionic aromaticity” if it can be described by at least one zwitterionic (charge-separated) Lewis structure involving charged Hückel-aromatic circuits, representable by charged circles (⊝, ⊕, subject to the condition that they cannot be adjacent and that the remainder of the structure after their deletion is empty or Kekulé-like, i. e. possibly charged but closed-shell with as many bonding π electron pairs as possible and at most one non-bonding pair per negative charge (e. g. an allylic anion or a pentadienylium cation for azulene, Figure 1). The analogy of single charge Hückel-aromatic circuits (C3+, C5−, C7+, C9−…) with Clar sextets (C6) on polyhex molecular graphs suggests a hypothetical generalization of the Clar sextet theory, predicting that the stability of isomeric benzenoids increases with the Clar number, i. e. the maximal number of Clar sextets that can be drawn in a Kekulé structure of a given isomer (the corresponding structure being then called a “Clar structure”). While all Clar sextets have the same stabilizing effect, the first issue would be to rank the relative stabilizing effects of the aromatic circuits, then to appraise the energetic cost of the charge separation vs the distance between the centroid of a charged circuit and the mean position of the opposite charge. For instance, the two cata-condensed tricyclic isomers of internal benzo-azulenes (C14H10), A and B shown in Figures S7 and S8, have the same Clar number (maximum number of Clar sextets among closed-shell resonance forms)=1, but B has a greater “aromatic zwitterionic number” (AZN=2) than A (AZN=1), and B is indeed calculated to be slightly more stable than A (see Figures S7–S8). The general concern was also addressed in the cited references [15].
- 15
- 15aC. Dahlstrand, M. Rosenberg, K. Kilsa, H. Ottosson, J. Phys. Chem. A 2012, 116, 5008–5017;
- 15bJ. Liu, S. Mishra, C. A. Pignedoli, D. Passerone, J. I. Urgel, A. Fabrizio, T. G. Lohr, J. Ma, H. Komber, M. Baumgarten, C. Corminboeuf, R. Berger, P. Ruffieux, K. Müllen, R. Fasel, X. Feng, J. Am. Chem. Soc. 2019, 141, 12011–12020;
- 15cX. Fu, H. Han, D. Zhang, H. Yu, Q. He, D. Zhao, Chem. Sci. 2020, 11, 5565–5571;
- 15dY. Wang, J. Chem. Inf. Model. 2021, DOI:10.1021/acs.jcim.1c00735.
- 16H. Prinzbach, U. Fischer, Angew. Chem. Int. Ed. 1965, 4, 598–599; Angew. Chem. 1965, 77, 592–592.
- 17A. Julg, P. François, Theor. Chim. Acta 1967, 7, 249–259.
- 18For the original reference on carbo-mers, see:Nummerierung?
- 18aR. Chauvin, Tetrahedron Lett. 1995, 36, 397–400; for reviews on carbo-mers, see:
- 18bV. Maraval, R. Chauvin, Chem. Rev. 2006, 106, 5317–5343;
- 18cK. Cocq, C. Lepetit, V. Maraval, R. Chauvin, Chem. Soc. Rev. 2015, 44, 6535–6559;
- 18dK. Cocq, C. Barthes, A. Rives, V. Maraval, R. Chauvin, Synlett 2019, 30, 30–43.
- 19K. Cocq, N. Saffon-Merceron, Y. Coppel, C. Poidevin, V. Maraval, R. Chauvin, Angew. Chem. Int. Ed. 2016, 55, 15133–15136;
Angew. Chem. 2016, 128, 15357–15360.
10.1002/ange.201608300 Google Scholar
- 20For closed-shell monocyclic species CNq (q=0, ±1, N – q even), the odd expansion factor 3 (CNq+n C2=>C3Nq) changes the total number of conjugated πz electrons from N – q to 3 N – q, thus preserving its parity (i. e. the radical/closed-shell character) and preserving (resp. switching) the 4n/4n+2 form of even total numbers of electrons if N even (resp. odd). Carbo-merization of neutral rings preserves both a possible radical character and the Hückel aromatic character of closed-shell rings.
- 21Examples of DFT calculations on carbo-meric structures:
- 21aC. Zhu, A. Poater, C. Duhayon, B. Kauffmann, A. Saquet, A. Rives, V. Maraval, R. Chauvin, Chem. Eur. J. 2021, 27, 9286–9291;
- 21bD. Listunov, O. Hammerich, I. Caballero-Quintana, A. Poater, C. Barthes, C. Duhayon, M. H. Larsen, J.-L. Maldonado, G. Ramos-Ortiz, M. B. Nielsen, V. Maraval, R. Chauvin, Chem. Eur. J. 2020, 26, 10707–10711;
- 21cC. Zhu, C. Duhayon, B. Kauffmann, A. Poater, A. Saquet, V. Maraval, R. Chauvin, Angew. Chem. Int. Ed. 2018, 57, 5640–5644;
Angew. Chem. 2018, 130, 5742–5746;
10.1002/ange.201713411 Google Scholar
- 21dD. Listunov, C. Duhayon, A. Poater, S. Mazères, A. Saquet, V. Maraval, R. Chauvin, Chem. Eur. J. 2018, 24, 10699–10710;
- 21eF. Turias, J. Poater, R. Chauvin, A. Poater, Struct. Chem. 2016, 27, 240–259;
- 21fK. Cocq, N. Saffon-Merceron, A. Poater, V. Maraval, R. Chauvin, Synlett 2016, 27, 2105–2112.
- 22
- 22aF. Kreuter, R. Tonner, J. Phys. Condens. Matter 2021, 33, 444003;
- 22bJ. Aihara, S. Oe, Bull. Chem. Soc. Jpn. 2003, 76, 1363–1364.
- 23
- 23aJ. Aihara, J. Am. Chem. Soc. 1976, 98, 2750–2758;
- 23bI. Gutman, M. Milun, N. Trinajstic, J. Am. Chem. Soc. 1977, 99, 1692–1704;
- 23cR. Chauvin, C. Lepetit, Phys. Chem. Chem. Phys. 2013, 15, 3855–3860;
- 23dZ. Zhou, R. G. Paar, J. Am. Chem. Soc. 1989, 111, 7371–7379.
- 24Z. F. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v R Schleyer, Chem. Rev. 2005, 105, 3842–3888.
- 25
- 25aS. Osuna, J. Poater, J. M. Bofill, P. Alemany, M. Solà, Chem. Phys. Lett. 2006, 428, 191–195;
- 25bF. Feixas, J. O. C. Jiménez-Halla, E. Matito, J. Poater, M. Solà, Pol. J. Chem. 2007, 81, 783–797;
- 25cA. Poater, X. Ribas, A. Llobet, L. Cavallo, M. Solà, J. Am. Chem. Soc. 2008, 130, 17710–17717;
- 25dJ. Poater, M. Gimferrer, A. Poater, Inorg. Chem. 2018, 57, 6981–6990;
- 25eC. J. Richmond, S. Escayola, A. Poater, Eur. J. Inorg. Chem. 2019, 2019, 2101–2108;
- 25fA. Poater, J. Phys. Chem. Lett. 2020, 11, 6262–6265;
- 25gA. Poater, L. Cavallo, Inorg. Chem. 2009, 48, 4062–4066;
- 25hM. Chawla, A. Poater, P. Besalú-Sala, K. Kalra, R. Oliva, L. Cavallo, Phys. Chem. Chem. Phys. 2018, 20, 7676–7685;
- 25iM. Chawla, A. Poater, R. Oliva, L. Cavallo, Phys. Chem. Chem. Phys. 2016, 18, 18045–18053;
- 25jA. Poater, S. Moradell, E. Pinilla, J. Poater, M. Solà, M. A. Martínez, A. Llobet, Dalton Trans. 2006, 2006, 1188–1196;
- 25kS. Escayola, J. Poater, M. Ramos, J. A. Luque-Urrutia, J. Duran, S. Simon, M. Solà, L. Cavallo, S. P. Nolan, A. Poater, Appl. Organomet. Chem. 2021, 35, e6362;
- 25lS. Escayola, A. Poater, A. Muñoz-Castro, M. Solà, Chem. Commun. 2021, 57, 3087–3090.
- 26T. M. Krygowski, M. Cyrański, Tetrahedron 1996, 52, 10255–10264.
- 27
- 27aP. Bultinck, R. Ponec, S. Van Damme, J. Phys. Org. Chem. 2005, 18, 706–718;
- 27bM. Giambiagi, M. S. de Giambiagi, C. D. dos Santos, A. P. de Figueiredo, Phys. Chem. Chem. Phys. 2000, 2, 3381–3392;
- 27cF. Feixas, E. Matito, J. Poater, M. Solà, Chem. Soc. Rev. 2015, 44, 6434–6451.
- 28
- 28aE. Matito, ESI-3D: Electron Sharing Indexes Program for 3D Molecular Space Partitioning, http://iqc.udg.es/∼eduard/ESI, Institute of Computational Chemistry and Catalysis: Girona, Catalonia, Spain 2014;
- 28bE. Matito, M. Duran, M. Solà, J. Chem. Phys. 2005, 122, 014109;
- 28cE. Matito, M. Solà, P. Salvador, M. Duran, Faraday Discuss. 2007, 135, 325–345.
- 29
- 29aJ. O. C. Jiménez-Halla, E. Matito, J. Robles, M. Solà, J. Organomet. Chem. 2006, 691, 4359–4366;
- 29bJ. Poater, M. Duran, M. Solà, Front. Chem. 2018, 6, 561;
- 29cJ. Poater, C. Viñas, I. Bennour, S. Escayola, M. Solà, F. Teixidor, J. Am. Chem. Soc. 2020, 142, 9396–9407.
- 30O. Huertas, J. Poater, M. Fuentes-Cabrera, M. Orozco, M. Solà, F. J. Luque, J. Phys. Chem. A 2006, 110, 12249–12258.
- 31M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT 2016.
- 32
- 32aA. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652;
- 32bJ. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244–13249.
- 33
- 33aR. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724;
- 33bT. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v R Schleyer, J. Comb. Chem. 1983, 4, 294–301.
- 34E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997–1000.
- 35
- 35aM. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327–335;
- 35bJ. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027–2094;
- 35cV. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001.
- 36K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251–8260.
- 37
- 37aA. Stanger, J. Org. Chem. 2006, 71, 883–893;
- 37bR. Gershoni-Poranne, A. Stanger, Chem. Eur. J. 2014, 20, 5673–5688.
- 38
- 38aD. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758–3772;
- 38bJ. Poater, M. Duran, M. Solà, Front. Chem. 2018, 6, 561.