Acylation of Hexaphenylbenzene for the Synthesis of [5]Cumulenes
Matthew A. Johnson
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
Search for more papers by this authorDr. Max M. Martin
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
Search for more papers by this authorDr. Kévin Cocq
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
Search for more papers by this authorProf. Dr. Norbert Jux
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
Search for more papers by this authorDr. Michael J. Ferguson
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Rik R. Tykwinski
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
Search for more papers by this authorMatthew A. Johnson
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
Search for more papers by this authorDr. Max M. Martin
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
Search for more papers by this authorDr. Kévin Cocq
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
Search for more papers by this authorProf. Dr. Norbert Jux
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
Search for more papers by this authorDr. Michael J. Ferguson
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Rik R. Tykwinski
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
Search for more papers by this authorGraphical Abstract
Abstract
The Friedel-Crafts acylation of hexaphenylbenzene is reported, and the reaction favorably provides the monoacylated products 1 a and 1 b. The resulting ketones 1 a and 1 b are used as precursors for the formation of [5]cumulenes, including 6 b in which the sterically demanding HPB moiety affords a diethynyl[5]cumulene that features significant stability (persistence) versus the analog 6 c which lacks the HPB endgroups. The unsymmetrical substitution pattern of the two most soluble derivatives 6 b and 6 c, allows for estimation of rotational barriers for diethynyl[5]cumulenes via VT NMR studies of cis-trans isomerization. For both molecules, the barrier to rotation is ca. 15 kcal mol−1, which is attenuated in comparison to other [5]cumulenes due to the presence of the ethynyl endgroups.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ejoc202101467-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718–747.
- 2V. Vij, V. Bhalla, M. Kumar, Chem. Rev. 2016, 116, 9565–9627.
- 3L. F. Fieser, Org. Synth. 1966, 46, 44.
- 4K. P. Angermund, P. Betz, H. Butenschön, Chem. Ber. 1993, 126, 713–724.
- 5R. Rathore, C. L. Burns, S. A. Abdelwahed, Org. Lett. 2004, 6, 1689–1692.
- 6R. Lorenz, D. Reger, R. Weller, N. Jux, N. Burzlaff, Dalton Trans. 2020, 49, 13134–13141.
- 7K. Kobayashi, N. Kobayashi, M. Ikuta, B. Therrien, S. Sakamoto, K. Yamaguchi, J. Org. Chem. 2005, 70, 749–752.
- 8D. Mössinger, D. Chaudhuri, T. Kudernac, S. Lei, S. De Feyter, J. M. Lupton, S. Höger, J. Am. Chem. Soc. 2010, 132, 1410–1423.
- 9M. M. Martin, D. Lungerich, F. Hampel, J. Langer, T. K. Ronson, N. Jux, Chem. Eur. J. 2019, 25, 15083–15090.
- 10D. R. Robello, A. André, T. A. McCovick, A. Kraus, T. H. Mourey, Macromolecules 2002, 35, 9334–9344.
- 11F. M. Menger, L. Shi, J. Am. Chem. Soc. 2009, 131, 6672–6673.
- 12E. Gagnon, T. Maris, K. E. Maly, J. D. Wuest, Tetrahedron 2007, 63, 6603–6613.
- 13L. Zhai, R. Shukla, R. Rathore, Org. Lett. 2009, 11, 3474–3477.
- 14D. Lungerich, D. Reger, H. Hölzel, R. Riedel, M. M. J. C. Martin, F. Hampel, N. Jux, Angew. Chem. Int. Ed. 2016, 55, 5602–5605; Angew. Chem. 2016, 128, 5692–5696.
- 15M. M. Martin, D. Lungerich, P. Haines, F. Hampel, N. Jux, Angew. Chem. Int. Ed. 2019, 58, 8932–8937; Angew. Chem. 2019, 131, 9027–9032.
- 16P. H. Gore, Chem. Rev. 1955, 55, 229–281.
- 17D. Wendinger, R. R. Tykwinski, Acc. Chem. Res. 2017, 50, 1468–1479.
- 18J. A. Januszewski, R. R. Tykwinski, Chem. Soc. Rev. 2014, 43, 3184–3203.
- 19C. S. Casari, M Tommasini, R. R. Tykwinski, A. Milani, Nanoscale 2016, 8, 4414–4435.
- 20M. R. Bryce, J. Mater. Chem. C 2021, 9, 10524–10546.
- 21M. U. Bühringer, K. Padberg, M. D. Phleps, H. Maid, C. Placht, C. Neiss, M. J. Ferguson, A. Görling, R. R. Tykwinski, Angew. Chem. Int. Ed. 2018, 57, 8321–8325; Angew. Chem. 2018, 130, 8454–8458.
- 22M. Franz, J. A. Januszewski, D. Wendinger, C. Neiss, L. D. Movsisyan, F. Hampel, H. L. Anderson, A. Goerling, R. R. Tykwinski, Angew. Chem. Int. Ed. 2015, 54, 6645–6649; Angew. Chem. 2015, 127, 6746–6750.
- 23W. Xu, E. Leary, S. Hou, S. Sangtarash, M. T. González, G. Rubio-Bollinger, Q. Wu, H. Sadeghi, L. Tejerina, K. E. Christensen, N. Agraït, S. J. Higgins, C. J. Lambert, R. J. Nichols, H. L. Anderson, Angew. Chem. Int. Ed. 2019, 58, 8378–8382; Angew. Chem. 2019, 131, 8466–8470.
- 24Y. Zang, T. Fu, Q. Zou, F. Ng, H. Li, M. L. Steigerwald, C. Nuckolls, L. Venkataraman, Nano Lett. 2020, 20, 8415–8419.
- 25A. D. Scaccabarozzi, A. Milani, S. Peggiani, S. Pecorario, B. Sun, R. R. Tykwinski, M. Caironi, C. S. Casari, J. Phys. Chem. Lett. 2020, 11, 1970–1974.
- 26A. S. Hay, J. Org. Chem. 1962, 27, 3320–3321.
- 27J. L. Marshall, D. Lehnherr, B. D. Lindner, R. R. Tykwinski, ChemPlusChem 2017, 82, 967–1001.
- 28J. L. Marshall, F. Arslan, J. A. Januszewski, M. J. Ferguson, R. R. Tykwinski, Helv. Chim. Acta 2019, 102, e1900001.
- 29S. Frankenberger, J. A. Januszewski, R. R. Tykwinski, Struct. Bonding (Berlin) 2014, 159, 219–256.
- 30See Ref. [28], CCDC 817302.
- 31J. A. Januszewski, D. Wendinger, C. D. Methfessel, F. Hampel, R. R. Tykwinski, Angew. Chem. Int. Ed. 2013, 52, 1817–1821; Angew. Chem. 2013, 125, 1862–1867.
- 32J.-D. van Loon, P. Seiler, F. Diederich, Angew. Chem. Int. Ed. Engl. 1993, 32, 1187–1189.
- 33V. Maraval, L. Leroyer, A. Harano, C. Barthes, A. Saquet, C. Duhayon, T. Shinmyozu, R. Chauvin, Chem. Eur. J. 2011, 17, 5086–5100.
- 34A. Auffrant, B. Jaun, P. D. Jarowski, K. N. Houk, F. Diederich, Chem. Eur. J. 2004, 10, 2906–2911.
- 35The spectrum and λmax of 6 a are provided for comparisons through UV-Vis analysis of the crude solid obtained from crystallization (see Supporting Information).
- 36It is also possible that molecular symmetry and the associated selection rules play a role in the observed λmax values, in addition to π-conjugation and planarity (i. e., [5]Ph and [5]TE are centrosymmetric while the others are not), see for example: M. Bednarz, P. Reineker, E. Mena-Osteritz, P. Bäuerle, J. Lumin. 2004, 110, 225–231.
- 37P. Cadiot, Ann. Chim. (Paris) 1956, 13, 214–272.
- 38H. Kessler, Angew. Chem. Int. Ed. Engl. 1970, 9, 219–235.
- 39S. Braun, H.-O. Kalinowski, S. Berger, in 150 and More Basic NMR Experiments, Wiley-VCH, Weinheim, 1998, vol. 2, pp. 144–146.