Transition-Metal-Catalyzed Construction of Axially Chiral Carbonyl Compounds
Yu Yan
College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
These authors contributed equally to this work
Search for more papers by this authorMin Pan
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 China
These authors contributed equally to this work
Search for more papers by this authorCorresponding Author
Jialin Ming
College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
Search for more papers by this authorJun-Ping Yue
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 China
Search for more papers by this authorXiao-Wang Chen
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Yong-Yuan Gui
College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu, 610068 China
Search for more papers by this authorCorresponding Author
Da-Gang Yu
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 China
Search for more papers by this authorYu Yan
College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
These authors contributed equally to this work
Search for more papers by this authorMin Pan
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 China
These authors contributed equally to this work
Search for more papers by this authorCorresponding Author
Jialin Ming
College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
Search for more papers by this authorJun-Ping Yue
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 China
Search for more papers by this authorXiao-Wang Chen
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Yong-Yuan Gui
College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu, 610068 China
Search for more papers by this authorCorresponding Author
Da-Gang Yu
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064 China
Search for more papers by this authorGraphical Abstract
Axially chiral carbonyl compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. Transition-metal-catalyzed approaches have become powerful tools for constructing axially chiral carbonyl compounds, offering high efficiency, selectivity, and versatility. This concept aims to provide a comprehensive overview of recent advances in the asymmetric synthesis of axially chiral carbonyl compounds. According to the reaction mode, the discussion is mainly divided into four categories: cross-coupling reactions, cycloaddition reactions, desymmetrization reactions, and other C−H activation reactions.
Abstract
The synthesis of axially chiral carbonyl compounds has attracted considerable interest in organic synthesis due to their prevalence in natural products and pharmaceuticals, as well as their utility in material science and catalysis. Transition-metal-catalyzed approaches have become powerful tools for their construction, offering high efficiency, selectivity, and versatility among the various methods developed. This concept aims to provide a comprehensive overview of recent advances in the transition-metal-catalyzed asymmetric synthesis of axially chiral carbonyl compounds, integrating scattered work with different catalytic systems. This feature concept is divided into four types of reactions based on the strategies employed: cross-coupling reactions, cycloaddition reactions, desymmetrization reactions, and other C−H activation reactions.
Conflict of Interests
There are no conflicts to declare.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1For selected reviews on axially chiral compounds via asymmetric organocatalysis, see:
- 1aE. Kumarasamy, R. Raghunathan, M. P. Sibi, J. Sivaguru, Chem. Rev. 2015, 115, 11239–11300;
- 1bY.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534–547;
- 1cG. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514–8523;
- 1dQ. Wang, Q. Gu, S.-L. You, Acta Chim. Sinica 2019, 77, 690–704;
- 1eT.-Z. Li, S.-J. Liu, W. Tan, F. Shi, Chemistry 2020, 26, 15779–15792;
- 1fJ. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805–4902;
- 1gO. Kitagawa, Acc. Chem. Res. 2021, 54, 719–730;
- 1hG.-J. Mei, J. J. Wong, W. Zheng, A. A. Nangia, K. N. Houk, Y. Lu, Chem 2021, 7, 2743–2757;
- 1iJ. A. Carmona, C. Rodríguez-Franco, R. Fernández, V. Hornillos, J. M. Lassaletta, Chem. Soc. Rev. 2021, 50, 2968–2983;
- 1jJ. K. Cheng, S.-H. Xiang, B. Tan, Acc. Chem. Res. 2022, 55, 2920–2937;
- 1kG. Hedouin, S. Hazra, F. Gallou, S. Handa, ACS Catal. 2022, 12, 4918–4937;
- 1lY.-J. Wu, G. Liao, B.-F. Shi, Green Synth. Catal. 2022, 3, 117–136;
10.1016/j.gresc.2021.12.005 Google Scholar
- 1mX. Zhang, K. Zhao, Z. Gu, Acc. Chem. Res. 2022, 55, 1620–1633;
- 1nH.-H. Zhang, F. Shi, Acc. Chem. Res. 2022, 55, 2562–2580;
- 1oC. B. Roos, C.-H. Chiang, L. A. M. Murray, D. Yang, L. Schulert, A. R. H. Narayan, Chem. Rev. 2023, 123, 10641–10727;
- 1pJ. Feng, C.-J. Lu, R.-R. Liu, Acc. Chem. Res. 2023, 56, 2537–2554;
- 1qH.-H. Zhang, T.-Z. Li, S.-J. Liu, F. Shi, Angew. Chem. Int. Ed. 2024, 63, e202311053.
- 2G. H. Christie, J. Kenner, J. Chem. Soc. Trans. 1922, 121, 614–620.
- 3
- 3aK. C. Nicolaou, N. L. Simmons, J. S. Chen, N. M. Haste, V. Nizet, Tetrahedron Lett. 2011, 52, 2041–2043;
- 3bH.-L. Jiang, X.-H. Luo, X.-Z. Wang, J.-L. Yang, X.-J. Yao, P. Crews, F. A. Valeriote, Q.-X. Wu, Fitoterapia 2012, 83, 1275–1280;
- 3cY. Lu, J. Li, C.-E. Dong, J. Huang, H.-B. Zhou, W. Wang, Future Med. Chem. 2017, 9, 1243–1275.
- 4
- 4aJ. A. Dale, H. Mosher, J. Am. Chem. Soc. 1973, 95, 512–519;
- 4bH. U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 2003, 345, 103–151;
- 4cG.-J. Mei, W. L. Koay, C.-Y. Guan, Y. Lu, Chem 2022, 8, 1855–1893.
- 5
- 5aT. Hashimoto, M. Hirose, K. Maruoka, J. Am. Chem. Soc. 2008, 130, 7556–7557;
- 5bY.-B. Wang, S.-C. Zheng, Y.-M. Hu, B. Tan, Nat. Commun. 2017, 8, 15489;
- 5cH. Song, Y. Li, Q.-J. Yao, L. Jin, L. Liu, Y.-H. Liu, B.-F. Shi, Angew. Chem. Int. Ed. 2020, 59, 6576–6580;
- 5dX. Xu, L. Peng, X. Chang, C. Guo, J. Am. Chem. Soc. 2021, 143, 21048–21055;
- 5eP.-F. Qian, T. Zhou, J.-Y. Li, Y.-B. Zhou, B.-F. Shi, ACS Catal. 2022, 12, 13876–13883.
- 6X. Shen, G. O. Jones, D. A. Watson, B. Bhayana, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 11278–11287.
- 7W. Tang, N. D. Patel, G. Xu, X. Xu, J. Savoie, S. Ma, M.-H. Hao, S. Keshipeddy, A. G. Capacci, X. Wei, Y. Zhang, J. J. Gao, W. Li, S. Rodriguez, B. Z. Lu, N. K. Yee, C. H. Senanayake, Org. Lett. 2012, 14, 2258–2261.
- 8W. Xia, Z.-W. Zhang, Y. Li, X. Jiang, H. Liang, Y. Zhang, R. Cao, L. Qiu, Org. Biomol. Chem. 2019, 17, 2351–2355.
- 9H. Yang, J. Sun, W. Gu, W. Tang, J. Am. Chem. Soc. 2020, 142, 8036–8043.
- 10C. Pan, Z. Zhu, M. Zhang, Z. Gu, Angew. Chem. Int. Ed. 2017, 56, 4777–4781.
- 11S.-Q. Qiu, Y. Chen, X.-J. Peng, S.-J. He, J. K. Cheng, Y.-B. Wang, S.-H. Xiang, J. Song, P. Yu, J. Zhang, B. Tan, Angew. Chem. Int. Ed. 2022, 61, e202211211.
- 12W. Li, S. Chen, J. Xie, Z. Fan, K. Yang, Q. Song, Nat. Synth. 2023, 2, 140–151.
- 13L. Ding, X. Sui, Z. Gu, ACS Catal. 2018, 8, 5630–5635.
- 14Z.-S. Liu, Y. Hua, Q. Gao, Y. Ma, H. Tang, Y. Shang, H.-G. Cheng, Q. Zhou, Nat. Catal. 2020, 3, 727–733.
- 15T. Hirata, I. Takahashi, Y. Suzuki, H. Yoshida, H. Hasegawa, O. Kitagawa, J. Org. Chem. 2016, 81, 318–323.
- 16C. Ma, Y. Sun, S. Liu, Z.-M. Li, J. Yang, H. Guo, J. Zhang, Chem Catal. 2022, 2, 3196–3206.
- 17Z. Zuo, R. S. Kim, D. A. Watson, J. Am. Chem. Soc. 2021, 143, 1328–1333.
- 18Y. Zhang, Y.-Z. Gu, K. Lu, Y.-P. Wang, A.-F. Wang, S.-H. Wang, S.-Q. Wei, F.-M. Zhang, X.-M. Zhang, A.-J. Ma, J.-B. Peng, Y.-Q. Tu, CCS Chem. 2024, DOI: 10.31635/ccschem.024.202404027.
- 19S.-S. Xu, H. Qiu, P.-P. Xie, Z.-H. Wang, X. Wang, C. Zheng, S.-L. You, T.-S. Mei, CCS Chem. 2024, DOI: 10.31635/ccschem.024.202403939.
- 20M. Auge, A. Feraldi-Xypolia, M. Barbazanges, C. Aubert, L. Fensterbank, V. Gandon, E. Kolodziej, C. Ollivier, Org. Lett. 2015, 17, 3754–3757.
- 21K. Kashima, K. Teraoka, H. Uekusa, Y. Shibata, K. Tanaka, Org. Lett. 2016, 18, 2170–2173.
- 22D. Yokose, Y. Nagashima, S. Kinoshita, J. Nogami, K. Tanaka, Angew. Chem. Int. Ed. 2022, 61, e202202542.
- 23M.-M. Xu, X.-Y. You, Y.-Z. Zhang, Y. Lu, K. Tan, L. Yang, Q. Cai, J. Am. Chem. Soc. 2021, 143, 8993–9001.
- 24Q.-J. Yao, S. Zhang, B.-B. Zhan, B.-F. Shi, Angew. Chem. Int. Ed. 2017, 56, 6617–6621.
- 25J. Fan, Q.-J. Yao, Y.-H. Liu, G. Liao, S. Zhang, B.-F. Shi, Org. Lett. 2019, 21, 3352–3356.
- 26J. Zhang, Q. Xu, J. Wu, J. Fan, M. Xie, Org. Lett. 2019, 21, 6361–6365.
- 27U. Dhawa, C. Tian, T. Wdowik, J. C. Oliveira, J. Hao, L. Ackermann, Angew. Chem. Int. Ed. 2020, 59, 13451–13457.
- 28G. Liao, Q.-J. Yao, Z.-Z. Zhang, Y.-J. Wu, D.-Y. Huang, B.-F. Shi, Angew. Chem. Int. Ed. 2018, 57, 3661–3665.
- 29S. Zhang, Q.-J. Yao, G. Liao, X. Li, H. Li, H.-M. Chen, X. Hong, B.-F. Shi, ACS Catal. 2019, 9, 1956–1961.
- 30G. Liao, B. Li, H.-M. Chen, Q.-J. Yao, Y.-N. Xia, J. Luo, B.-F. Shi, Angew. Chem. Int. Ed. 2018, 57, 17151–17155.
- 31G. Liao, H.-M. Chen, Y.-N. Xia, B. Li, Q.-J. Yao, B.-F. Shi, Angew. Chem. Int. Ed. 2019, 58, 11464–11468.
- 32H.-M. Chen, G. Liao, C.-K. Xu, Q.-J. Yao, S. Zhang, B.-F. Shi, CCS Chem. 2021, 3, 455–465.
- 33J. Zhang, J. Fan, Y. Wu, Z. Guo, J. Wu, M. Xie, Org. Lett. 2022, 24, 5143–5148.
- 34S. T. Linde, V. Corti, V. H. Lauridsen, J. N. Lamhauge, K. A. Jørgensen, N. M. Rezayee, Chem. Sci. 2023, 14, 3676–3681.
- 35
- 35aC. Yang, T.-R. Wu, Y. Li, B.-B. Wu, R.-X. Jin, D.-D. Hu, Y.-B. Li, K.-J. Bian, X.-S. Wang, Chem. Sci. 2021, 12, 3726–3732;
- 35bC. Yang, F. Li, T.-R. Wu, R. Cui, B.-B. Wu, R.-X. Jin, Y. Li, X.-S. Wang, Org. Lett. 2021, 23, 8132–8137.
- 36H. Jiang, X.-K. He, X. Jiang, W. Zhao, L.-Q. Lu, Y. Cheng, W.-J. Xiao, J. Am. Chem. Soc. 2023, 145, 6944–6952.
- 37R. Deng, J. Xi, Q. Li, Z. Gu, Chem 2019, 5, 1834–1846.
- 38
- 38aJ. Wang, X. Liu, X. Feng, Chem. Rev. 2011, 111, 6947–6983;
- 38bX.-F. Wu, B. Han, K. Ding, Z. Liu, The Chemical Trans-formations of C1 Compounds, Wiley-VCH, Weinheim, 2022.
10.1002/9783527831883 Google Scholar
- 39For selected reviews on asymmetric synthesis with CO2, see:
- 39aN. Kielland, C. J. Whiteoak, A. W. Kleij, Adv. Synth. Catal. 2013, 355, 2115–2138;
- 39bM. I. Childers, J. M. Longo, N. J. Van Zee, A. M. LaPointe, G. W. Coates, Chem. Rev. 2014, 114, 8129–8152;
- 39cJ. Vaitla, Y. Guttormsen, J. Mannisto, A. Nova, T. Repo, A. Bayer, K. H. Hopmann, ACS Catal. 2017, 7, 7231–7244;
- 39dC.-K. Ran, X.-W. Chen, Y.-Y. Gui, J. Liu, L. Song, K. Ren, D.-G. Yu, Sci. China Chem. 2020, 63, 1336–1351;
- 39eY. Shi, B. W. Pan, Y. Zhou, J. Zhou, Y.-L. Liu, F. Zhou, Org. Biomol. Chem. 2020, 18, 8597–8619;
- 39fX. Guo, Y. Wang, J. Chen, G. Li, J.-B. Xia, Chin. J. Org. Chem. 2020, 40, 2208–2220;
- 39gY.-Y. Gui, X.-W. Chen, D.-G. Yu, Chin. J. Org. Chem. 2024, 44, 1038–1040.
- 40B. Kang, L. Wang, X. Sun, H. Liu, Z. Wen, Y. Ren, C. Qi, H. Jiang, Org. Chem. Front. 2023, 10, 5231–5241.
- 41X.-W. Chen, C. Li, Y.-Y. Gui, J.-P. Yue, Q. Zhou, L.-L. Liao, J.-W. Yang, J.-H. Ye, D.-G. Yu, Angew. Chem. Int. Ed. 2024, 63, e202403401.
- 42B. Ye, L. Su, K. Zheng, S. Gao, J. Liu, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.202413949.
- 43C. Li, X.-W. Chen, L.-L. Liao, Y.-Y. Gui, J.-W. Yang, S. Zhang, J.-P. Yue, X. Zhou, J.-H. Ye, Y. Lan, D.-G. Yu, Angew. Chem. Int. Ed. 2024, e202413305.
- 44J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754–8786.
- 45M. Liu, J. Sun, T. G. Erbay, H.-Q. Ni, R. Martín-Montero, P. Liu, K. M. Engle, Angew. Chem. Int. Ed. 2022, 61, e202203624.
- 46C. Shen, Y. Zhu, W. Shen, S. Jin, L. Zhong, S. Luo, L. Xu, G. Zhong, J. Zhang, Org. Chem. Front. 2022, 9, 4834–4839.
- 47S. Shaaban, H. Li, F. Otte, C. Strohmann, A. P. Antonchick, H. Waldmann, Org. Lett. 2020, 22, 9199–9202.
- 48P. Hu, B. Liu, F. Wang, R. Mi, X.-X. Li, X. Li, ACS Catal. 2022, 12, 13884–13896.
- 49For selected reviews on transition-metal-catalyzed organic transformations of CO2, see:
- 49aA. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948–15982;
- 49bS.-S. Yan, Q. Fu, L.-L. Liao, G.-Q. Sun, J.-H. Ye, L. Gong, Y.-Z. Bo-Xue, D.-G. Yu, Coord. Chem. Rev. 2018, 374, 439;
- 49cL. Zhang, Z. Li, M. Takimoto, Z. Hou, Chem. Rec. 2020, 20, 494–512;
- 49dA. Tortajada, M. Börjesson, R. Martin, Acc. Chem. Res. 2021, 54, 3941–3952;
- 49eG. Zhang, Y. Cheng, M. Beller, F. Chen, Adv. Synth. Catal. 2021, 363, 1583–1596;
- 49fS. Pimparkar, A. K. Dalvi, A. Koodan, S. Maiti, S. A. Al-Thabaiti, M. Mokhtar, A. Dutta, Y. R. Lee, D. Maiti, Green Chem. 2021, 23, 9283–9317;
- 49gC.-K. Ran, L.-L. Liao, T.-Y. Gao, Y.-Y. Gui, D.-G. Yu, Cur. Opin. Green Sustain. Chem. 2021, 32, 100525;
- 49hY. Yi, W. Hang, C. Xi, Chin. J. Org. Chem. 2021, 41, 80–93;
- 49iN. Iwasawa, B. Chem. Soc. Jpn. 2023, 96, 824–841.