Alternative Recovery and Valorization of Metals from Exhausted Catalytic Converters in a New Smart Polymetallic Catalyst
Dr. Sebastiano Tieuli
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorProf. Franco Baldi
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorProf. Dr. Iztok Arčon
University of Nova Gorica, Nova Gorica 5000, Slovenia, Institut Jozef Stefan, Ljubljana 1000 Slovenia
Search for more papers by this authorProf. Dr. Katarina Vogel-Mikuš
Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000 Slovenia
Search for more papers by this authorMichele Gallo
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorDr. Laura Sperni
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorCorresponding Author
Dr. Oreste Piccolo
SCSOP, via Bornò 5, 23896 Sirtori (LC), Italy
Search for more papers by this authorCorresponding Author
Prof. Stefano Paganelli
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorDr. Sebastiano Tieuli
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorProf. Franco Baldi
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorProf. Dr. Iztok Arčon
University of Nova Gorica, Nova Gorica 5000, Slovenia, Institut Jozef Stefan, Ljubljana 1000 Slovenia
Search for more papers by this authorProf. Dr. Katarina Vogel-Mikuš
Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000 Slovenia
Search for more papers by this authorMichele Gallo
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorDr. Laura Sperni
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorCorresponding Author
Dr. Oreste Piccolo
SCSOP, via Bornò 5, 23896 Sirtori (LC), Italy
Search for more papers by this authorCorresponding Author
Prof. Stefano Paganelli
Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, 30172 Venezia Mestre, Italy
Search for more papers by this authorGraphical Abstract
A polymetals solution, recovered from exhausted catalytic converters, was transformed in the catalyst Metx-EPS by the use of a culture broth of Klebsiella oxytoca DSM 29614. Indeed, this microorganism produces the exopolysaccharide EPS, able to embed these metals. This new metals-polymeric composite showed a good catalytic activity and recyclability in the aqueous biphasic hydrogenation of different substrates.
Abstract
A new metals-polymeric composite, Metx-EPS (I), was prepared to be used as catalyst in water or in two-phase aqueous conditions. The metals source was an exhausted catalytic converter that was grinded and treated with an acidic solution at room temperature. After filtration, the solution was concentrated, neutralized and added to a broth of Klebsiella oxytoca DSM 29614 to produce (I) where metals are embedded in a peculiar polysaccharide structure (EPS). The composite was easily recovered from the fermentation broth and purified. The process protocol was verified many times and was shown to be reproducible satisfactorily. The % recovery of metals, originally present in the converter, was good as determined by atomic absorption. The morphology and the chemical state of main metals in (I) were investigated by X-ray absorption spectroscopy methods (XANES and EXAFS). No metallic alloy seems to be evident. The catalytic activity and a possible synergic effect due to the presence of the different metals was valuated in the hydrogenation of some substrates, valuable precursors for the production of fine chemicals.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
slct201803925-sup-0001-misc_information.pdf285.9 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1U. U. Jadhav, H. Hocheng, J. Achiev. Mat. Manufact. Eng. 2012, 54, 159–167.
- 2R. M. Izatt, S. R. Izatt, R. L. Bruening, N. E. Izatt, B. A. Moyer, Chem. Soc. Rev. 2014, 43, 2451–2475.
- 3I. Arčon, S. Paganelli, O. Piccolo, M. Gallo, K. Vogel-Mikuš, F. Baldi, J. Synchrotron Rad. 2015, 22, 1215–1226.
- 4S. Paganelli, O. Piccolo, F. Baldi, R. Tassini, M. Gallo, G. La Sorella, Appl. Catal. A Gen. 2013, 451, 144–152.
- 5S. K. Papageorgiou, E. P. Kouvelos, E. P. Favvas, A. A. Sapalidis, G. E. Romanos, F. K. Katsaros, Carbohydr. Res. 2010, 34 5, 469–473.
- 6L. Tan, H. Dong, X. Liu, J. He, H. Xu, J. Xie, RSC Adv. 2017, 7, 7060–7072.
- 7S. Leone, C. De Castro, M. Parrilli, F. Baldi, R. Lanzetta, Eur. J. Org. Chem. 2007, 5183–5189.
- 8W. Meng, D. Xiao, R. Wang, World J. Microbiol. Biotechnol. 2016, 32, 32–46.
- 9Y. N. Guragain, P. V. Vadlani, Process Biochem. 2017, 58, 25–34.
- 10J. Wong, F. W. Lytle, R. P. Messmer, D. H. Maylotte, Phys. Rev. B 1984, 30, 5596–5610.
- 11P. Jovanovič, N. Hodnik, F. Ruiz-Zepeda, I. Arčon, B. Jozinović, M. Zorko, M. Bele, M. Šala, V. S. Šelih, S. Hočevar, M. Gaberšček, J. Am. Chem. Soc. 2017, 139, 12837–12846.
- 12I. Arčon, A. Kodre, R. M. Abra, A. Huang, J. J. Vallner, D. D. Lasič, Colloids Surf. B Biointerfaces 2004, 33, 199–204.
- 13P. Bouvier, E. Djurado, C. Ritter, A. J. Dianoux, G. Lucazeau, Int. J. Inorg. Mater. 2001, 3, 647–654.
- 14T. Dwars, G. Oehme, Adv. Synth. Catal. 2002, 344, 239–260.
- 15B. Chen, U. Dingerdissen, J. G. E. Krauter, H. G. J. Lansink Rotgerink, K. Mobus, D. J. Ostgard, P. Panster, T. H. Riermeier, S. Seebald, T. Tacke, H. Trauthwein, Appl. Catal. A Gen. 2005, 280, 17–46.
- 16F. Joò, Acc. Chem. Res. 2002, 35, 738–745.
- 17H. Gulyàs, A. C. Bényei, J. Bakos, Inorg. Chim. Acta 2004, 357, 3094–3098.
- 18G. Neri, G. Rizzo, L. De Luca, A. Donato, M. G. Mugolino and R. Pietropaolo, React. Kinet. Catal. Lett. 2008, 93, 193–202.
- 19Industrial Catalysis: A Practical Approach, (Ed. J. Hagen), Wiley VCH, Weinheim, 2006.
- 20M. Kołodziej, A. Drelinkiewicz, E. Lalik, J. Gurgul, D. Duraczy'nska, R. Kosydar, Appl. Catal. A: Gen. 2016, 515, 60–71.
- 21D. D. Falcone, J. H. Hack, R. J. Davis, ChemCatChem 2016, 8, 1074–1075.
- 22M. Chatterjee, Y Ikushima, F.-Y. Zhao, Catal. Lett. 2002, 82, 141–144.
- 23C. Stangel, G. Charalambidis, V. Varda, A. G. Coutsolelos, I. D. Kostas, Eur. J. Inorg. Chem. 2011, 4709–4716.
- 24T. Shimizu, M. Ota, Y. Sato, H. Inomata, Chem. Eng. Res. Des. 2015, 104, 174–179.
- 25G. Szöllösi, B. Török, G. Szakonyi, I. Kun, M. Bartok, Appl. Catal. A Gen. 1998, 172, 225–232.
- 26B. Török, K. Balazsik, G. Szollosi, M. Török, K. Felföldi, M. Bartok, Catal. Lett. 2002, 81, 55–62.
- 27B. Nair, Int. J. Toxicol. 2000, 20, 23–50.
- 28A. Marinas, R. A. Sheldon, Catal. Today 2011, 167, 1–2.
- 29S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, Chem. Rev. 2018, 118, 11023–11117.
- 30J. N. Chheda, J. A. Dumesic, Catal. Today 2007, 123, 59–70.
- 31A. Corma, O. de la Torre, M. Renz, N. Villandier, Angew. Chem. Int. Ed. 2011, 50, 2375–2378.
- 32J. van Haveren, E. L. Scott, J. Sanders, Biofuels Bioprod. Bioref. 2008, 2, 41–57.
- 33P. Gallezot, Chem. Soc. Rev. 2012, 41, 1538–1558.
- 34R. A. Sheldon, Green Chem. 2014, 16, 950–963.
- 35V. Montes, J. F. Miñambres, A. N. Khalilov, M. Boutonnet, J. M. Marinas, F. J. Urbano, A. M. Maharramov, A. Marinas, Catal. Today 2018, 306, 89–95.
- 36R. López-Asensio, J. A. Cecilia, C. P. Jiménez-Gómez, C. García-Sancho, R. Moreno-Tost, P. Maireles-Torres, Appl. Catal. A Gen. 2018, 556, 1–9.
- 37J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539–554.
- 38R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. López Granados, Energy Environ. Sci. 2016, 9, 1144–1189.
- 39M. M. Villaverde, N. M. Bertero, T. F. Garetto, A. J. Marchi, Catal. Today 2013, 213, 87–92.
- 40R. V. Sharma, U. Das, R. Sammynaiken, A. K. Dalai, Appl. Catal. A: Gen. 2013, 454, 127–136.
- 41D. E. Resasco, S. Crossley, A. I.Ch.E. J. 2009, 55, 1082–1089.
- 42D. Liu, D. Zemyanov, T. Wu, R. J. Lobo-Lapidus, J. A. Dumesic, J. T. Miller, C. L. Marshall, J. Catal. 2013, 299, 336–345
- 43S. Sitthisa, T. Sooknoi, Y. G. Ma, P. B. Balbuena, D. E. Resasco, J. Catal. 2011, 277, 1–13.
- 44C. P. Jiménez-Gómez, J. A. Cecilia, R. Moreno-Tost, P. Maireles-Torres, Topics Catal. 2017, 60, 1040–1053.
- 45C. P. Jiménez-Gómez, J. A. Cecilia, D. Durán-Martín, R. Moreno-Tost, J. Santamaría-González, J. Mérida-Robles, R. Mariscal, P. Maireles-Torres, J. Catal. 2016, 336, 107–115.
- 46C. P. Jiménez-Gómez, J. A. Cecilia, I. Márquez-Rodríguez, R. Moreno-Tost, J. Santamaría-González, J. Mérida-Robles, P. Maireles-Torres, Catal. Today 2017, 279, 327–338.
- 47S. Sitthisa, W. An, D. E. Resasco, J. Catal. 2011, 284, 90–101.
- 48T. P. Sulmonetti, S. H. Pang, M. T. Claure, S. Lee, D. A. Cullen, P. K. Agrawal, C. W. Jones, Appl. Catal. A Gen. 2016, 517, 187–195.
- 49S. Srivastava, P. Mohanty, J. K. Parikh, A. K. Dalai, S. S. Amritphale, A. K. Khare, Chin. J. Catal. 2015, 36, 933–942.
- 50R. M. Mironenko, O. B. Belskaya, T. I. Gulyaeva, A. I. Nizovskii, A. V. Kalinkin, V. I. Bukhtiyarov, A. V. Lavrenov, V. A. Likholobov, Catal. Today 2015, 249, 145–152.
- 51M. Hronec, K. Fulajtárová, I. Vávra, T. Soták, E. Dobročka, M. Mičušík, Appl. Catal. B Environ. 2016, 181, 210–219.
- 52J. Kijenski, P. Winiarek, T. Paryjczak, A. Lewichi, A. Mikolajska, Appl. Catal. A Gen. 2002, 233, 171–182.
- 53K. An, N. Musselwhite, G. Kennedy, V. V. Pushkarev, L. R. Baker, G. A. Somorjai, J. Colloid Interface Sci. 2013, 392, 122–128.
- 54Q. Yuan, D. Zhang, L. van Haandel, F. Ye, T. Xue, E. J. M. Hensen, Y. Guan, J. Mol. Catal. A Chem. 2015, 406, 58–64.
- 55E.-J. Ras, B. McKay, G. Rothenberg, Top. Catal. 2010, 53, 1202–1208.
- 56A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411–2502.
- 57A. Gandini, N. M. Belgacem, Polym. Int. 1998, 47, 267–276.
- 58A. Gandini, M. N. Belgacem, Prog. Polym. Sci. 1997, 22, 1203–1379.
- 59R. Alamillo, M. Tucker, M. Chia, Y. Pagán-Torres, J. Dumesic, Green Chem. 2012, 14, 1413–1419.
- 60Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 12, 154–156.
- 61A. Cadu, K. Sekine, J. Mormul, D. M. Ohlmann, T. Schaub, A. S. K. Hashmi, Green Chem. 2018, 20, 3386–3393.
- 62Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
- 63J. Song, Z−F Huang, L. Pan, K. Li, X. Zhang, L. Wang, J−J. Zou, Appl. Catal. B Environ. 2018, 227, 386–408.
- 64Fine chemicals through heterogeneous catalysis, (R. A. Sheldon, H. van Bekkum, Eds.), Wiley-VCH, Weinheim, 2001.
- 65H. U. Blaser, H. Steiner, M. Studer, ChemCatChem 2009, 1, 210–221.
- 66M. Pietrowski, Curr. Org. Synth. 2012, 9, 470–487.
- 67M. Orlandi, D. Brenna, R. Harms, S. Jost, M. Benaglia, Org. Process Res. Dev. 2018, 22, 430–445.
- 68M. L. Kantam, R. Chakravarti, U. Pal, B. Sreedhar, S. Bhargava, Adv. Synth. Catal. 2008, 350, 822–827.
- 69M. Takasaki, Y. Motoyama, K. Higashi, S.-H. Yoon, I. Mochida, H. Nagashima, Org. Lett. 2008, 10, 1601–1604.
- 70H. Wu, L. Zhuo, Q. He, X. Liao, B. Shi, Appl. Catal. A Gen. 2009, 366, 44–56.
- 71X. Huang, Y. Wang, X. Liao, B. Shi, Chem. Commun. 2009, 4687–4689.
- 72A. J. Kasparian, C. Savarin, A. M. Allgeier, S. D. Walker, J. Org. Chem. 2011, 76, 9841–9844.
- 73V. Pandarus, R. Ciriminna, F. Béland, M. Pagliaro, Adv. Synth. Catal. 2011, 353, 1306–1316.
- 74P. Buchwalter, J. Rosé, P. Braunstein, Chem. Rev. 2014, 115, 28–126.
- 75Cooperative catalysis: designing efficient catalysts for synthesis, (R. Peters Ed.). John Wiley & Sons, Stuttgart, 2015.
- 76F. Cárdenas-Lizana, S. Gómez-Quero, A. Hugon, L. Delannoy, C. Louis, M. A. Keane, J. Catal. 2009, 262, 235–243.
- 77A. Corma, C. González-Arellano, M. Iglesias, F. Sánchez, Appl. Catal. A Gen. 2009, 356, 99–102.
- 78M. R. Nabid, Y. Bide, N. Ghalavand, M. Niknezhad, Appl. Organomet. Chem. 2014, 28, 389–395.
- 79H. Wei, Y. Ren, A. Wang, X. Liu, X. Liu, L. Zhang, S. Miao, L. Li, J. Liu, J. Wang, G. Wang, D. Sua, T. Zhang, Chem. Sci. 2017, 8, 5126–5131.
- 80The Chemistry of Anilines, (Z. Rappoport Ed.), John Wiley & Sons, New York, 2007.
- 81M. Liang, X. Wang, H. Liu, H. Liu, Y. Wang, J. Catal. 2008, 255, 335–342.
- 82Z. Zhao, H. Yang, Y. Li, X. Guo, Green Chem. 2014, 16, 274–281.
- 83Y. Jang, S. Kim, S. W. Jun, B. H. Kim, S. Hwang, I. K. Song, B. M. Kim, T. Hyeon, Chem. Commun. 2011, 47, 3601–3603.
- 84V. D. Rathod, S. Paganelli, O. Piccolo, Catal. Commun. 2016, 84, 52–55.
- 85F. Figueras, B. Coqb, J. Mol. Catal. A: Chem. 2001, 173, 223–30.
- 86F. Cárdenas-Lizana, S. Gómez-Queroa, C. Amorimb, M. A. Keanea, Appl. Catal. A Gen. 2014, 473, 41–50.
- 87F. Li, J. Liang, K. Wang, B. Cao, W. Zhu, H. Song, Reac. Kinet. Mech. Cat. 2017, 120, 651–662.
- 88C. V. Rode, R. V. Chaudhari, Ind. Eng. Chem. Res. 1994, 33, 1645–1653.
- 89J. Zhanga, Y. Wanga, H. Jia, Y. Weia, N. Wua, B. Zuob, Q. Wang, J. Catal. 2005, 229, 114–118.
- 90V. Kratkya, M. Kralika, M. Mecarovaa, M. Stolcovaa, L. Zaliberab, M. Hroneca, Appl. Catal. A Gen. 2002, 235, 225–231.