A Harmonized Applied and Theoretical Exploration for Nanomolar Level Recognition of Perilous F− and CN− by Multichannel Chemosensor: Proposition of Hg2+-Mediated Logic Gate Imitator
Amita Mondal
Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209 India
Department of Chemistry, National Institute of Technology Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal India
Search for more papers by this authorAbhijit Hazra
Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209 India
Academy of Scientific and Innovative Research (AcSIR), Mahatma Gandhi Avenue, Ghaziabad, 201002, Uttar Pradesh West Bengal, India
Search for more papers by this authorDr. Jitamanyu Chakrabarty
Department of Chemistry, National Institute of Technology Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal India
Search for more papers by this authorDr. Naresh C. Murmu
Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209 India
Academy of Scientific and Innovative Research (AcSIR), Mahatma Gandhi Avenue, Ghaziabad, 201002, Uttar Pradesh West Bengal, India
Search for more papers by this authorCorresponding Author
Dr. Priyabrata Banerjee
- [email protected]
- [email protected]
- +91 9434921533 | Fax: +91 343 2546 745
Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209 India
Academy of Scientific and Innovative Research (AcSIR), Mahatma Gandhi Avenue, Ghaziabad, 201002, Uttar Pradesh West Bengal, India
Search for more papers by this authorAmita Mondal
Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209 India
Department of Chemistry, National Institute of Technology Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal India
Search for more papers by this authorAbhijit Hazra
Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209 India
Academy of Scientific and Innovative Research (AcSIR), Mahatma Gandhi Avenue, Ghaziabad, 201002, Uttar Pradesh West Bengal, India
Search for more papers by this authorDr. Jitamanyu Chakrabarty
Department of Chemistry, National Institute of Technology Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal India
Search for more papers by this authorDr. Naresh C. Murmu
Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209 India
Academy of Scientific and Innovative Research (AcSIR), Mahatma Gandhi Avenue, Ghaziabad, 201002, Uttar Pradesh West Bengal, India
Search for more papers by this authorCorresponding Author
Dr. Priyabrata Banerjee
- [email protected]
- [email protected]
- +91 9434921533 | Fax: +91 343 2546 745
Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209 India
Academy of Scientific and Innovative Research (AcSIR), Mahatma Gandhi Avenue, Ghaziabad, 201002, Uttar Pradesh West Bengal, India
Search for more papers by this authorGraphical Abstract
In the pursuit of detecting F− and CN− selectively by a single multichannel chemosensor, PMA (9-anthracenecarboxaldehyde pentafluorophenylhydrazone) has been synthesized, which can detect F− (detection limit of 76 nm) more promisingly in compared to CN− (detection limit of 92 nm) owing to the smaller size and more electronegativity of F−. Moreover, all the theoretical outcomes along with potential energy surface scanning well corroborated with the experimental findings affirming stronger affinity of PMA towards F−.
Abstract
An inimitable Schiff-base chemosensor PMA (9-anthracenecarboxaldehyde pentafluorophenylhydrazone) was premeditated and implicated with the aim of detecting F− and CN− in semi-aqueous medium. Highly photostable, multichannel sensory probe, PMA (with 31 % quantum yield) exhibited amusing sensing efficiency towards F− and CN− by dint of colorimetric, fluorimetric as well as electrochemical alterations, with a very low detection limit (76 nM for F− and 92 nM CN−). However, all the experimental outcomes evidenced PMA to be more sensitive towards F− than CN− owing to the more electronegativity and smaller size of F−. The spectroscopic characterizations of the chemosensor along with the sensing studies were performed by more than a few erudite analytical tools, whereas the theoretical calculations also substantiated the experimental consequences. Here the thorough investigation on the theoretical aspect was performed to ensure the effective and plausible reason behind different sensitivity towards these two perilous anions. Moreover, the recyclability of PMA upon simultaneous addition of F−/CN− and Hg2+ also helped to intend a three input logical circuitry.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
slct202002964-sup-0001-misc_information.pdf2.5 MB | Supplementary |
slct202002964-sup-0001-Supplementary_Movie_C-H_F_1.mp413.6 MB | Supplementary |
slct202002964-sup-0001-Supplementary_Movie_N-H_C_3.mp49.3 MB | Supplementary |
slct202002964-sup-0001-Supplementary_Movie_N-H_F_2.mp410.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. K. Salomón-Flores, I. J. Bazany-Rodríguez, D. Martínez-Otero, M. A. García-Eleno, J. J. Guerra-García, D. Morales-Morales, A. Dorazco-González, Dalton Trans. 2017, 46, 4950–4959
- 2D. S. Philips, S. Ghosh, K. V. Sudheesh, C. H. Suresh, A. Ajayaghosh, Chem. Eur. J. 2017, 23, 17973–17980
- 3H. R. Bhat, P. C. Jha, J. Phys. Chem. A. 2017, 121, 19, 3757–3767
- 4N. V. Nghia, J. Oh, J. Jung, M. H. Lee, Organometallics 2017, 36, 14, 2573–2580
- 5J. M. Stauber, G. E. Alliger, D. G. Nocera, C. C. Cummins, Inorg. Chem. 2017, 56, 14, 7615–7619
- 6S. Madhu, M. Ravikanth, Inorg. Chem. 2014, 53, 1646–1653
- 7A. Kumar, M. Bhatt, G. Vyas, S. Bhatt, P. Paul, ACS Appl. Mater. Interfaces 2017, 9, 20, 17359–17368
- 8B. Uttam, R. Kandi, A. Hussain, C. P. Rao, J. Org. Chem. 2018, 83, 19, 11850–11859
- 9Y. Liu, Q. Ouyang, H. Li, Z. Zhang, Q. Chen, ACS Appl. Mater. Interfaces 2017, 9, 21, 18314–18321
- 10W.-C. Lin, S.-K. Fang, J.-W. Hu, H.-Y. Tsai, K.-Y. Chen, Anal. Chem. 2014, 86, 4648–4652
- 11P. Wang, Y. Bai, C. Yao, X. Li, L. Zhou, W. Wang, A. M. El-Toni, J. Zi, D. Zhao, L. Shi, F. Zhang, Anal. Chem. 2017, 89, 2583–2591
- 12H. J. Jang, J. H. Kang, M. Lee, M. H. Lim, C. Kim, Ind. Eng. Chem. Res. 2018, 57, 1, 54–62
- 13J. H. Lee, A. R. Jeong, I.-S. Shin, H.-J. Kim, J.-I. Hong, Org. Lett. 2010, 12, 4, 764–767
- 14M. Kim, N. Mergu, Y.-A. Son, J. Lumin. 2018, 244–252
- 15A. Mohammadi, Z. Dehghan, M. Rassa, N. Chaibakhsh, Sens. Actuators B 2016, 388–397
- 16K. Ponnuvel, K. Santhiya, V. Padmini, Photochem. Photobiol. Sci. 2016, 15, 1536–1543
- 17S. N. Kodlady, B. Narayana, B. K. Sarojini, B. U. Gauthama, Inorg. Chim. Acta 2019, 494, 245–255
- 18P. K. Aneesh, S. R. Nambiar, T. P. Rao, A. Ajayaghosh, Phys. Chem. Chem. Phys., 2014, 16, 8529–8535
- 19P. Ghosh, S. Paul, P. Banerjee, CrystEngComm, 2017, 19, 6703–6710
- 20M. O. Sinnokrot, C. D. Sherrill, J. Am. Chem. Soc. 2004, 126, 7690–7697
- 21A. L. Ringer, M. O. Sinnokrot, R. P. Lively, C. D. Sherrill, Chem. Eur. J. 2006, 12, 3821–3828
- 22P. Ghosh, B. G. Roy, S. Jana, S. K. Mukhopadhyay, P. Banerjee, Phys. Chem. Chem. Phys. 2015, 17, 20288
- 23Q. Yang, C. Jia, Q. Chen, W. Du, Y. Wang, Q. Zhang, J. Mater. Chem. B 2017, 5, 2002–2009
- 24I. O. Isaac, Munir, M. Al-Rashida, S. A. Ali, Z. Shafiq, M. Islam, R. Ludwig, K. Ayub, K. M. Khan, A. Hameed, R. Soc. Open Sci. 2018, 5, 180646
- 25Y. Li, T.-S. Chu, J. Phys. Chem. A 2017, 121, 5245–5256
- 26H. Dong, J. Zhao, H. Yang, Y. Zheng, Org. Chem. Front., 2018, 5, 1241–1247
- 27J.-S. Chen, P.-W. Zhou, L. Zhao, T.-S. Chu, RSC Adv., 2014, 4, 254–259
- 28G.-Y. Li, D. Liu, H. Zhang, W.-W. Li, F. Wang, Y.-H. Liang, Spectrochim Acta A Mol Biomol Spectrosc. 2015; 149, 17-223
- 29G.-Y. Li, J.-P. Wang, H. Zhang, W.-W. Li, F. Wang, Y.-H. Liang Chem. Phys. Lett. 2014, 616–617, 30–34
- 30D. Liu, J.-P. Wang, G.-Y. Li, C.-H. Zhou, Spectrochim Acta A Mol Biomol Spectrosc. 2019, 211, 44–51
- 31A. Bamesberger, C. Schwartz, Q. Song, W. Han, Z. Wang, H. Cao, New J. Chem., 2014, 38, 884–888
- 32X. Yuan, X. Xu, C. Zhao, F. Zhang, Y. Lu, Y. Shen, C. Wang, Sens. Actuators B 2017, 253, 1096–1105
- 33R. Misra, T. Jadhav, B. Dhokale, S. M. Mobin, Dalton Trans. 2015, 44, 16052–16060
- 34T. S. Reddy, R. Maragani, R. Misra, Dalton Trans., 2016, 45, 2549–2553
- 35H. J. Lee, S.J Park, H. J. Sin, Y. J. Na, C. Kim, New J. Chem. 2015, 39, 3900–3907
- 36M.-S. Yuan, X. Du, Z. Liu, T. Li, W. Wang, E. V. Anslyn, J. Wang, Chem. Eur. J. 2018, 24, 9211–9216
- 37V. K. Harikrishnan, S. M. Basheer, N. Joseph, A. Sreekanth, Spectrochim Acta A Mol Biomol Spectrosc. 2017, 182, 160–167
- 38M. Lee, S. Jo, D. Lee, Z. Xu, J. Yoon, Dyes Pigm. 2015, 120, 288–292
- 39J. Tummachote, W. Punyain, S. Thanomsak, A. Sirikulkajorn, B. Tomapatanaget, Spectrochim Acta A Mol Biomol Spectrosc. 2019, 214, 384–392
- 40S. K. Padhan, M. B. Podh, P. K. Sahu, S. N. Sahu, Sens. Actuators B 2018, 255, 1376–1390
- 41A. K. Ghosh, A. Hazra, A. Mondal, P. Banerjee, Inorg. Chim. Acta. 2019, 488, 86–119
- 42A. R. Chowdhury, A. Mondal, B. G. Roy, J. C. Bose, K. S. Mukhopadhyay, P. Banerjee, Photochem. Photobiol. Sci. 2017, 16, 1654–1663
- 43C. I. David, N. Bhuvanesh, H. Jayaraj, A. Thamilselvan, D. Parimala devi, A. Abiram, J. Prabhu, R. Nandhakumar, ACS Omega. 2020, 5, 6, 3055–3072
- 44W. Wei, R. Lu, S. Tang, X. Liu, J. Mater. Chem. A. 2015, 3, 4604–4611
- 45J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed.; Springer, New York, 2006, pp 1–923
- 46J. Zhang, A. Li, H. Zou, J. Peng, J. Guo, W. Wu, H. Zhang, J. Zhang, X. Gu, W. Xu, S. Xu, S. H. Liu, A. Qin, J. W. Y. Lam, B. Z. Tang, Mater. Horiz. 2020, 7, 135–142
- 47P. Ghosh, B. G. Roy, S. K. Mukhopadhyay, P. Banerjee, RSC Adv. 2015, 5, 27387–27392
- 48N. Kumari, S. Jha, S. Bhattacharya, J. Org. Chem. 2011, 76, 8215–8222
- 49A. Mondal, A. Roy Chowdhury, S. Bhuyan, S. K. Mukhopadhyay, P. Banerjee, Dalton Trans. 2019, 48, 4375–4386
- 50B. Gu, Y. Zhou, X. Zhang, X. Liu, Y. Zhang, R. Marks, H. Zhang, X. Liu, Q. Zhang, Nanoscale 2016, 8, 276–282
- 51E. Sumesh, M. S. Bootharaju, Anshup, T. Pradeep, J. Hazard. Mater. 2011, 89, 450–457
- 52I. Chakraborty, T. Udayabhaskararao, T. Pradeep, J. Hazard. Mater. 2012, 211–212, 396–403
- 53K. P. Lisha, S. M. Maliyekkal, T. Pradeep, Chem. Eng. J. 2010, 160, 432–439
- 54A. O. Ortolan, I. Øestrøm, G. F. Caramori, L. T. Parreira, A. Muñoz-Castro, F. M. Bickelhaupt, Organometallic. 2018, 37, 13, 2167–2176
- 55A. O. Ortolan, I. Oestroem, G. F. Caramori, R. L. T. Parreira, E. H. de Silva, F. M. Bickelhaupt, J. Phys. Chem. A. 2018, 122, 12, 3328–3336
- 56A. O. Ortolan, G. F. Caramori, F. M. Bickelhaupt, R. L. T. Parreira, A. Muñoz-Castroe, T. Kar, Phys. Chem. Chem. Phys. 2017, 19, 24696–24705
- 57S. J. Malthus, S. A. Cameron, S. Brooker, Inorg. Chem. 2018, 57, 2480–2488
- 58H.-W. Rhee, S. W. Lee, J.-S. Lee, Y.-T. Chang, J.-I. Hong, ACS Comb. Sci. 2013, 15, 483–490