Crystallization of Diamond from Graphene Oxide Nanosheets by a High Temperature and High Pressure Method
Masahiro Fukuda
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorDr. M. Saidul Islam
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorProf. Yoshihiro Sekine
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorToru Shinmei
Geodynamics Research Center, Ehime University, 2-5, Matsuyama, Ehime, 790-8577 Japan
Search for more papers by this authorProf. Leonard F. Lindoy
School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006 Australia
Search for more papers by this authorCorresponding Author
Prof. Shinya Hayami
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorMasahiro Fukuda
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorDr. M. Saidul Islam
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorProf. Yoshihiro Sekine
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorToru Shinmei
Geodynamics Research Center, Ehime University, 2-5, Matsuyama, Ehime, 790-8577 Japan
Search for more papers by this authorProf. Leonard F. Lindoy
School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006 Australia
Search for more papers by this authorCorresponding Author
Prof. Shinya Hayami
Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorGraphical Abstract
We have succeeded in synthesizing diamond from graphene oxide (GO) using a high temperature/high pressure method. This structural phase transition was characterized from Raman and XPS spectra. Due to its high chemical reactivity, GO can be doped with various heteroatoms. Therefore, we propose that heteroatom-doped diamond can be synthesized from GO.
Abstract
Herein we report a high temperature and high pressure driven crystallization of two-dimensional graphene oxide (GO) nanosheets to three-dimensional diamond. The successful phase transformation was confirmed using X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The phase transition platform will available to utilize for a wide variety of diamond doping employing, for example, nitrogen or other light elements, in which the correspondingly doped GO is used as the starting material.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
slct202100574-sup-0001-misc_information.pdf497.9 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. S. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, Nature 2003, 421, 599.
- 2V. N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nanotechnol. 2012, 7, 11–23.
- 3P. J. Heaney, A. V. Sumant, C. D. Torres, R. W. Carpick, F. E. Pfefferkorn, Diamond Relat. Mater. 2008, 17, 223–233.
- 4J. D. T. Ekimov, S. M. S. E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, Nature 2004, 428, 542.
- 5D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228–240.
- 6Z. Sheng, L. Shao, J. Chen, W. Bao, F. Wang, X. Xia, ACS Nano 2011, 5, 4350–4358.
- 7J. Han, L. L. Zhang, S. Lee, J. Oh, K. Lee, J. R. Potts, J. Ji, ACS Nano 2013, 7, 19–26.
- 8K. Kakaei, A. Balavandi, J. Colloid Interface Sci. 2016, 463, 46–54.
- 9M. Fukuda, M. S. Islam, Y. Shudo, J. Yagyu, L. F. Lindoy, S. Hayami, Chem. Commun. 2020, 56, 4364–4367.
- 10K. Hatakeyama, M. S. Islam, K. Michio, C. Ogata, T. Taniguchi, A. Funatsu, T. Kida, S. Hayami, Y. Matsumoto, J. Mater. Chem. A 2015, 3, 20892–20895.
- 11H. Takehira, M. S. Islam, M. R. Karim, Y. Shudo, R. Ohtani, L. F. Lindoy, T. Taniguchi, M. Osada, S. Hayami, ChemistrySelect 2017, 2, 6941–6944.
- 12M. Fukuda, M. S. Islam, T. Mashimo, S. Hayami, Chem. Lett. 2020, 49, 648–651.
- 13H. Takehira, M. R. Karim, Y. Shudo, M. Fukuda, T. Mashimo, S. Hayami, Sci. Rep. 2018, 8, 17392.
- 14Y. Hirano, J. N. Beltramini, A. Mori, M. Nakamura, M. R. Karim, Y. Kim, M. Nakamura, S. Hayami, RSC Adv. 2020, 10, 11727–11736.
- 15J. Liu, L. Cui, D. Losic, Acta Biomater. 2013, 9, 9243–9257.
- 16B. Standley, A. Mendez, E. Schmidgall, M. Bockrath, Nano Lett. 2012, 12, 1165–1169.
- 17A. C. F. Robertson, J. Robertson, Phys. Rev. B 1969, 31, 632–645.
- 18D. S. Knight, W. B. White, J. Mater. Res. 1989, 4, 385–393.
- 19M. Akaishi, Diamond Relat. Mater. 1993, 2, 183–189.
- 20M. Akaishi, S. Yamaoka, J. Cryst. Growth 2000, 209 999–1003.
- 21M. Isshiki, T. Irifune, K. Hirose, S. Ono, Y. Ohishi, T. Watanuki, E. Nishibori, M. Takata, M. Sakata, Nature 2004, 427, 60–63.
- 22A. Hermann, M. Mookherjee, Proc. Natl. Acad. Sci. USA 2016, 113, 13971–13976.
- 23A. M. Dimiev, L. B. Alemany, J. M. Tour, ACS Nano 2013, 7, 576–588.
- 24M. Koinuma, H. Tateishi, K. Hatakeyama, S. Miyamoto, C. Ogata, A. Funatsu, T. Taniguchi, Y. Matsumoto, Chem. Lett. 2013, 42, 924–926.
- 25T. T. P. Cheung, J. Appl. Phys. 1982, 53, 6857–6862.
- 26H. Tsai, D. B. Bogy, J. Vac. Sci. Technol. A 1987, 5, 3287–3312.
- 27F. R. McFeely, S. P. Kowalczyk, L. Ley, R. G. CaveH, R. A. Pollak, D. A. Shirley, Phys. Rev. B 1974, 9, 5268–5278.
- 28R. Kalish, Carbon 1999, 37, 781–785.
- 29L. Fang, H. Ohfuji, T. Shinmei, T. Irifune, Diamond Relat. Mater. 2011, 20, 819–825.
- 30H. Okazaki, T. Wakita, T. Muro, T. Nakamura, Y. Muraoka, T. Yokoya, S. I. Kurihara, H. Kawarada, T. Oguchi, Y. Takano, Appl. Phys. Lett. 2015, 106, 4–8.
- 31Z. Li, J.-H. Zang, Q. Lou, X.-G. Yang, B.-S. Dong, T. Liu, S.-L. Wang, Chin. J. Lumin. 2019, 40, 153–158.
10.3788/fgxb20194002.0153 Google Scholar
- 32T. Liu, X.-G. Yang, Z. Li, Y.-W. Hu, C.-F. Lv, W.-B. Zhao, J.-H. Zang, C.-X. Shan, Chin. Phys. 2020, 29, 108102.