Synthesis, Optical Properties, Preliminary Antimycobacterial Evaluation and Docking Studies of Trifluoroacetylated 3-Pyrrolyl Boron-Dipyrromethene
Matvey Horetski
Department of Macromolecular Compounds, Belarusian State University, 14 Leningradskaya Street., Minsk, 220030 Belarus
Search for more papers by this authorAnna Gorlova
Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Street., Novosibirsk, 630090 Russia
Search for more papers by this authorDr. Renata Płocińska
The Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street., Lodz, 93-232 Poland
Search for more papers by this authorDr. Anna Brzostek
The Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street., Lodz, 93-232 Poland
Search for more papers by this authorDr. Yaroslav Faletrov
Department of Macromolecular Compounds, Belarusian State University, 14 Leningradskaya Street., Minsk, 220030 Belarus
Search for more papers by this authorDr. Jarosław Dziadek
The Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street., Lodz, 93-232 Poland
Search for more papers by this authorCorresponding Author
Prof. Vladimir Shkumatov
Department of Macromolecular Compounds, Belarusian State University, 14 Leningradskaya Street., Minsk, 220030 Belarus
Search for more papers by this authorMatvey Horetski
Department of Macromolecular Compounds, Belarusian State University, 14 Leningradskaya Street., Minsk, 220030 Belarus
Search for more papers by this authorAnna Gorlova
Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Street., Novosibirsk, 630090 Russia
Search for more papers by this authorDr. Renata Płocińska
The Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street., Lodz, 93-232 Poland
Search for more papers by this authorDr. Anna Brzostek
The Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street., Lodz, 93-232 Poland
Search for more papers by this authorDr. Yaroslav Faletrov
Department of Macromolecular Compounds, Belarusian State University, 14 Leningradskaya Street., Minsk, 220030 Belarus
Search for more papers by this authorDr. Jarosław Dziadek
The Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street., Lodz, 93-232 Poland
Search for more papers by this authorCorresponding Author
Prof. Vladimir Shkumatov
Department of Macromolecular Compounds, Belarusian State University, 14 Leningradskaya Street., Minsk, 220030 Belarus
Search for more papers by this authorGraphical Abstract
Bright, facile and bioactive! Insertion of trifluoroacetyl group into the structure of 3-pyrrolyl boron dipyrromethene (BODIPY) undergoes with a high yield and leads to a new product with considerably increased absorption and emission intensities. DFT calculations results helped to point out the role of intramolecular rotations in compounds’ bright fluorescence. Obtained BODIPY dye performs distinct antimycobacterial activity and its possible target proteins are proposed with molecular modeling.
Abstract
The article provides the route to trifluoroacetylated fluorescent boron dipyrromethene dye (2). The compound performs intensive absorption and emission bands in near-red wavelength region. Photophysical properties of 2 are investigated in different solvents. A notable increase of fluorescence quantum yield after trifluoroacetyl group insertion connected with a change in intramolecular interactions parameters. The role of molecular geometry aspects in observed photophysical properties and molecular fragments rotation energy barriers are explained by quantum-mechanical calculations. 2 performs considerable antimycobacterial activity. According to molecular docking simulations, 2 is capable of affinity binding in the active sites of mycobacterial MycP1 and MycP3 serine proteases. The geometries of final ligand-protein complexes show the possibility of protein active site covalent modification at the serine residue of the catalytic triad. At lower concentrations, 2 can act as a fluorescent dye for microscopy analysis and corresponding staining patterns are shown for Mycobacterium smegmatis and Staphylococcus aureus cells.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
slct202200506-sup-0001-misc_information.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Treibs, F.-H. Kreuzer, Justus Liebigs Ann. Chem. 1968, 718, 208–223.
- 2A. M. Bittel, A. M. Davis, L. Wang, M. A. Nederlof, J. O. Escobedo, R. M. Strongin, S. L. Gibbs, Sci. Rep. 2018, 8, 4590.
- 3J. P. Wang, F. Huo, Y. Yue, C. Yin, Luminescence 2020, 35, 1156–1173.
- 4J. E. N. Minchin, J. F. Rawls, Methods Cell Biol. 2011, 105, 63–86.
- 5K. H. Nguyen, Y. Hao, W. Chen, Y. Zhang, M. Xu, M. Yang, Y. N. Liu, Luminescence 2018, 33, 816–836.
- 6M. Vedamalai, I. Gupta, Luminescence 2018, 33, 10–14.
- 7B. Shen, Y. Qian, Z. Qi, C. Lu, Y. Cui, ChemistrySelect 2017, 2, 9970–9976.
- 8E. Courrier, C. Maret, S. Charaoui-Boukerzaza, V. Lambert, A. De Nicola, W. Muzuzu, G. Ulrich, H. Raberin, P. Flori, B. Moine, Z. He, P. Gain, G. Thuret, ChemistrySelect 2018, 3, 7674–7679.
- 9D. P. Murale, S. C. Hong, M. M. Haque, J.-S. Lee, ChemBioChem 2018, 19, 1001–1005.
- 10D. P. Murale, M. M. Haque, S. C. Hong, S. Jang, J. H. Lee, S. J. An, J.-S. Lee, Dyes Pigm. 2021, 196, 109830.
- 11M. Jurášek, J. Valečka, I. Novotný, Z. Kejík, J. Fähnrich, A. Marešová, J. Tauchen, P. Bartůněk, B. Dolenský, M. Jakubek, P. B. Drašar, J. Králová, Bioorg. Chem. 2021, 117, 105410.
- 12Y. Ni, J. Wu, Org. Biomol. Chem. 2014, 12, 3774–3791.
- 13A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891–4932.
- 14H. Liu, W. Song, D. Gröninger, L. Zhang, Y. Lu, K. S. Chan, Z. Zhou, K. Rurack, Z. Shen, Commun. Biol. 2019, 2, 442.
- 15Z. Wang, Y. Fang, S. Zhi, D. J. Simpson, A. Gill, L. M. Mcmullen, N. F. Neumann, M. G. Gänzle, Appl. Environ. Microbiol. 2020, 86, e02123–19.
- 16L. Kong, K. Lu, G. Ma, Y. Yao, X. Ling, W. Liu, Luminescence 2016, 31, 1448–1455.
- 17V. Leen, V. Z. Gonzalvo, W. M. Deborggraeve, N. Boens, W. Dehaen, Chem. Commun. 2010, 46, 4908–4910.
- 18Y. Li, Y. Tang, M. Gao, Y. Wang, J. Han, J. Xia, L. Wang, X. Tang, L. Ni, J. Photochem. Photobiol. A 2018, 352, 65–72.
- 19D. J. Joshi, M. Jun, L. Yang, A. J. Lough, H. Yan, Acta Crystallogr. Sect. E Crystallogr. Commun. 2018, 74, 103–108.
- 20L. Li, J. Han, B. Nguyen, K. Burgess, J. Org. Chem. 2008, 73, 1963–1970.
- 21X. Li, S. Huang, Y. Hu, Org. Biomol. Chem. 2012, 10, 2369–2372.
- 22T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, J. Am. Chem. Soc. 2005, 127, 12162–12163.
- 23W. Ren, H. Xiang, C. Peng, Z. Musha, J. Chen, X. Li, R. Huang, Y. Hu, RSC Adv. 2018, 8, 5542–5549.
- 24C. Thivierge, R. Bandichhor, K. Burgess, Org. Lett. 2007, 9, 2135–2138.
- 25G. Mirri, D. C. Schoenmakers, P. H. J. Kouwer, P. Veranič, I. Muševič, B. Štefane, ChemistryOpen 2016, 5, 450–454.
- 26G. Ulrich, C. Goze, M. Guardigli, A. Roda, R. Ziessel, Angew. Chem. Int. Ed. 2005, 44, 3694–3698; Angew. Chem. 2005, 117, 3760–3764.
- 27M. Zhang, E. Hao, Y. Xu, S. Zhang, H. Zhu, Q. Wang, C. Yu, L. Jiao, RSC Adv. 2012, 2, 11215–11218.
- 28T. Kaur, V. Lakshmi, M. Ravikanth, RSC Adv. 2013, 3, 2736–2745.
- 29M. H. Gelb, J. P. Svaren, R. H. Abeles, Biochemistry 1985, 24, 1813–1817.
- 30K. Otrubova, D. L. Boger, ACS Chem. Neurosci. 2012, 3, 340–348.
- 31M. Ilies, D. P. Dowling, P. M. Lombardi, D. W. Christianson, Bioorg. Med. Chem. Lett. 2011, 21, 5854–5858.
- 32R. R. Frey, C. K. Wada, R. B. Garland, M. L. Curtin, M. R. Michaelides, J. Li, L. J. Pease, K. B. Glaser, P. A. Marcotte, J. J. Bouska, S. S. Murphy, S. K. Davidsen, Bioorg. Med. Chem. Lett. 2002, 12, 3443–3447.
- 33M. Kawase, N. Motohashi, H. Sakagami, T. Kanamoto, H. Nakashima, L. Ferenczy, K. Wolfard, C. Miskolci, J. Molnár, Int. J. Antimicrob. Agents 2001, 18, 161–165.
- 34A. Amour, M. Reboud-Ravaux, E. de Rosny, A. Abouabdellah, J.-P. Bégué, D. Bonnet-Delpon, M. Le Gall, J. Pharm. Pharmacol. 2011, 50, 593–600.
10.1111/j.2042-7158.1998.tb06892.x Google Scholar
- 35D. L. Flynn, N. A. Abood, B. C. Holwerda, Curr. Opin. Chem. Biol. 1997, 1, 190–196.
- 36K. J. Seung, S. Keshavjee, M. L. Rich, Cold Spring Harb. Perspect. Med. 2015, 5, a017863.
- 37M. Miretti, L. Juri, M. C. Cosiansi, T. C. Tempesti, M. T. Baumgartner, ChemistrySelect 2019, 4, 9726–9730.
- 38P. A. Magdum, N. M. Gokavi, S. T. Nandibewoor, Luminescence 2017, 32, 206–216.
- 39G. Panda, Shagufta, J. K. Mishra, V. Chaturvedi, A. K. Srivastava, R. Srivastava, B. S. Srivastava, Bioorg. Med. Chem. 2004, 12, 5269–5276.
- 40J. P. Silva, R. Appelberg, F. M. Gama, Biotechnol. Adv. 2016, 34, 924–940.
- 41I. D. Olaru, F. von Groote-Bidlingmaier, J. Heyckendorf, W. W. Yew, C. Lange, K. C. Chang, Eur. Respir. J. 2015, 45, 1119–1131.
- 42K. Mdluli, M. Spigelman, Curr. Opin. Pharmacol. 2006, 6, 459–467.
- 43A. Koul, E. Arnoult, N. Lounis, J. Guillemont, K. Andries, Nature 2011, 469, 483–490.
- 44S. B. Baravkar, M. A. Wagh, L. U. Nawale, A. S. Choudhari, S. Bhansali, D. Sarkar, G. J. Sanjayan, ChemistrySelect 2019, 4, 2851–2857.
- 45S. Konduri, V. Pogaku, J. Prashanth, V. Siva Krishna, D. Sriram, S. Basavoju, J. N. Behera, K. Prabhakara Rao, ChemistrySelect 2021, 6, 3869–3874.
- 46V. Chaturvedi, N. Dwivedi, R. P. Tripathi, S. Sinha, J. Gen. Appl. Microbiol. 2007, 53, 333–337.
- 47D. R. Mohbiya, N. Sekar, ChemistrySelect 2018, 3, 1635–1644.
- 48C. Reichardt, T. Welton Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2010, p. 692.
- 49M. Korycka-Machała, J. Pawełczyk, P. Borówka, B. Dziadek, A. Brzostek, M. Kawka, A. Bekier, S. Rykowski, A. B. Olejniczak, D. Strapagiel, Z. Witczak, J. Dziadek, Cells 2020, 9, 603.
- 50A. C. Gibbs, R. Steele, G. Liu, B. A. Tounge, G. T. Montelione, Biochemistry 2018, 57, 1591–1602.
- 51G. Spengler, A. Molnar, G. Klausz, Y. Mandi, M. Kawase, N. Motohashi, J. Molnar, Int. J. Antimicrob. Agents 2004, 23, 631–633.
- 52Z. G. Varga, A. Armada, P. Cerca, L. Amaral, M. A. A. Mior Ahmad Subki, M. A. Savka, E. Szegedi, M. Kawase, N. Motohashi, J. Molnár, In Vivo 2021, 26, 277–285.
- 53B. F. Hohlfeld, B. Gitter, K. J. Flanagan, C. J. Kingsbury, N. Kulak, M. O. Senge, A. Wiehe, Org. Biomol. Chem. 2020, 18, 2416–2431.
- 54M. Solomonson, P. F. Huesgen, G. A. Wasney, N. Watanabe, R. J. Gruninger, G. Prehna, C. M. Overall, N. C. J. Strynadka, J. Biol. Chem. 2013, 288, 17782–17790.
- 55A. Coros, B. Callahan, E. Battaglioli, K. M. Derbyshire, Mol. Microbiol. 2008, 69, 794–808.
- 56K.-W. Wong, Microbiol. Spectrum 2017, 5, TBTB2-0001–2015.
- 57A. Hamza, J. M. Wagner, T. J. Evans, M. S. Frasinyuk, S. Kwiatkowski, C.-G. Zhan, D. S. Watt, K. V. Korotkov, J. Chem. Inf. Model. 2014, 54, 1166–1173.
- 58M. S. Frasinyuk, S. Kwiatkowski, J. M. Wagner, T. J. Evans, R. W. Reed, K. V. Korotkov, D. S. Watt, Bioorg. Med. Chem. Lett. 2014, 24, 3546–3548.
- 59J. M. Tufariello, J. R. Chapman, C. A. Kerantzas, K.-W. Wong, C. Vilchèze, C. M. Jones, L. E. Cole, E. Tinaztepe, V. Thompson, D. Fenyö, M. Niederweis, B. Ueberheide, J. A. Philips, W. R. Jacobs, Proc. Natl. Acad. Sci. 2016, 113, E348–E357.
- 60E. Tinaztepe, J.-R. Wei, J. Raynowska, C. Portal-Celhay, V. Thompson, J. A. Philips, Infect. Immun. 2016, 84, 2255–2263.
- 61Y. Faletrov, A. Brzostek, R. Plocinska, J. Dziadek, E. Rudaya, I. Edimecheva, V. Shkumatov, Steroids 2017, 117, 29–37.
- 62M. Knight, J. Braverman, K. Asfaha, K. Gronert, S. Stanley, PLOS Pathog. 2018, 14, e1006874.
- 63C. S. Lunde, C. H. Rexer, S. R. Hartouni, S. Axt, B. M. Benton, Antimicrob. Agents Chemother. 2010, 54, 2198–200.
- 64G. Domingue, J. W. Costerton, M. R. W. Brown, FEMS Immunol. Med. Microbiol. 1996, 16, 223–228.
- 65J. M. Monteiro, P. B. Fernandes, F. Vaz, A. R. Pereira, A. C. Tavares, M. T. Ferreira, P. M. Pereira, H. Veiga, E. Kuru, M. S. VanNieuwenhze, Y. V. Brun, S. R. Filipe, M. G. Pinho, Nat. Commun. 2015, 6, 8055.