Synthesis of New Imidazo[1,2-a]pyridine Triazole Hybrid Molecules as Potential Apoptotic Antitumor Agents
Fatma Albayrak Halac
Department of Chemistry, College of Basic Science, Gebze Technical University, 41400 Kocaeli, Turkey
Search for more papers by this authorSebnem Essiz
Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Cibali-Fatih, Istanbul, Turkey
Graduate School of Science and Engineering, Bioinformatics and Genetics Program, Kadir Has University, Fatih, 34083 Istanbul, Turkey
Search for more papers by this authorBurak Servili
Graduate School of Science and Engineering, Bioinformatics and Genetics Program, Kadir Has University, Fatih, 34083 Istanbul, Turkey
Search for more papers by this authorRamazan Altundas
Department of Chemistry, College of Basic Science, Gebze Technical University, 41400 Kocaeli, Turkey
Search for more papers by this authorBilgesu Onur Sucu
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul Medipol University, 34810 Istanbul, Turkey
Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
Search for more papers by this authorCorresponding Author
Irem Kulu
Department of Chemistry, College of Basic Science, Gebze Technical University, 41400 Kocaeli, Turkey
Search for more papers by this authorFatma Albayrak Halac
Department of Chemistry, College of Basic Science, Gebze Technical University, 41400 Kocaeli, Turkey
Search for more papers by this authorSebnem Essiz
Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Cibali-Fatih, Istanbul, Turkey
Graduate School of Science and Engineering, Bioinformatics and Genetics Program, Kadir Has University, Fatih, 34083 Istanbul, Turkey
Search for more papers by this authorBurak Servili
Graduate School of Science and Engineering, Bioinformatics and Genetics Program, Kadir Has University, Fatih, 34083 Istanbul, Turkey
Search for more papers by this authorRamazan Altundas
Department of Chemistry, College of Basic Science, Gebze Technical University, 41400 Kocaeli, Turkey
Search for more papers by this authorBilgesu Onur Sucu
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul Medipol University, 34810 Istanbul, Turkey
Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey
Search for more papers by this authorCorresponding Author
Irem Kulu
Department of Chemistry, College of Basic Science, Gebze Technical University, 41400 Kocaeli, Turkey
Search for more papers by this authorGraphical Abstract
Novel imidazo[1,2-a]pyridine-1,2,3-triazole derivatives have been synthesized and evaluated for antiproliferative activity against MCF7, A549, HePG2, T98G cell lines. Compound 5c was found to be more potent on PARP protein in MCF7 cell line. The synthesized compounds were docked to PI3K, CDK2, MEK1, IGF-1, TUB1, DNA topoisomerase, PARP1, and BCL2. The best docking poses for PARP1 and CDK2 were obtained from 5c, 5d and 5 f.
Abstract
Novel imidazo[1,2-a]pyridines bearing 1,2,3-triazole moieties at the C3 position were synthesized. After the characterization of the synthesized compounds, their in vitro therapeutic activities were evaluated in various cancer cell lines (MCF7, A549, HePG2 and T98G). Methoxy substituted derivative was identified as the most potent compound based on the results of its anti-proliferative activity on various cancer cell lines, as well as showing no cytotoxicity on the healthy human fibroblast cell line (MRC-5). As an indicator of apoptosis, a significant decrease in the level of PARP protein was observed in the MCF7 cells treated with this derivative. Molecular docking studies were conducted on wide range of targets such as phosphoinositide 3-kinase (PI3K), cyclin-independent kinase 2 (CDK2), mitogen-activated protein kinase (MEK), insulin-like growth-factor-1 (IGF-1), tubulin, DNA topoisomerase, poly (ADP-ribose) polymerase (PARP) and B-cell lymphoma-2 (BCL2). All the compounds tested showed the lowest binding energies with target PARP1. Moreover, CDK2 and tubulin displayed relatively good binding scores. The docking poses and scores were cross-checked with two different software and multiple protein conformations were included to incorporate flexible protein docking features. Finally, drug-likeness properties of the compounds are further tested via Swiss-ADME software.
Conflict of interest
No conflict of interest was declared by the authors.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
slct202304911-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Gunaganti, A. Kharbanda, N. R. Lakkaniga, L. Zhang, R. Cooper, H. Li, B. Frett, Chem. Commun. 2018, 54, 12954–12957.
- 2S. Aliwaini, A. M. Awadallah, R. Y. Morjan, M. Ghunaim, H. Alqaddi, A. Y. Abuhamad, E. A. Awadallah, Y. M. Abughefra, Oncol. Lett. 2019, 18, 830–837.
- 3D. Vanda, P. Zajdel, M. Soural, Eur. J. Med. Chem. 2019, 181, DOI:10.1016/j.ejmech.2019.111569.
- 4N. Devi, D. Singh, R. K. Rawal, J. Bariwal, V. Singh, Curr. Top. Med. Chem. 2016, 16, 2963–2994.
- 5C. Enguehard-Gueiffier, A. Gueiffier, Mini-Rev. Med. Chem. 2007, 7, 888–899.
- 6T. C. Liu, X. Peng, Y. C. Ma, Y. C. Ji, D. Q. Chen, M. Y. Zheng, D. M. Zhao, M. S. Cheng, M. Y. Geng, J. K. Shen, J. Ai, B. Xiong, Acta Pharmacol. Sin. 2016, 37, 698–707.
- 7R. Ducray, I. Simpson, F. H. Jung, J. W. M. Nissink, P. W. Kenny, M. Fitzek, G. E. Walker, L. T. Ward, K. Hudson, Bioorg. Med. Chem. Lett. 2011, 21, 4698–4701.
- 8A. M. H. Altaher, M. A. Adris, S. H. Aliwaini, Sys Rev Pharm 2021, 12, 79–85.
- 9Y. Yu, Y. Han, F. Zhang, Z. Gao, T. Zhu, S. Dong, M. Ma, J. Med. Chem. 2020, 63, 3028–3046.
- 10C. R. Coxon, E. Anscombe, S. J. Harnor, M. P. Martin, B. J.-P. Carbain, B. T. Golding, I. R. Hardcastle, L. K. Harlow, S. Korolchuk, C. J. Matheson, D. R. Newell, M. E. M. Noble, M. Sivaprakasam, S. J. Tudhope, D. M. Turner, L.-Z. Wang, S. R. Wedge, C. Wong, R. J. Griffin, J. A. Endicott, C. Cano, J. Med. Chem., Just Accept. Manuscr. • Publ. Date 2016, 22.
- 11T. Adon, D. Shanmugarajan, H. Y. Kumar, RSC Adv. 2021, 11, 29227–29246.
- 12G. I. Shapiro, J. Clin. Oncol. 2006, 24, 1770–1783.
- 13D. Cai, K. F. Byth, G. I. Shapiro, Cancer Res. 2006, 66, 435–444.
- 14C. Jaramillo, J. E. De Diego, C. Hamdouchi, E. Collins, H. Keyser, C. Sánchez-Martínez, M. Del Prado, B. Norman, H. B. Brooks, S. A. Watkins, C. D. Spencer, J. A. Dempsey, B. D. Anderson, R. M. Campbell, T. Leggett, B. Patel, R. M. Schultz, J. Espinosa, M. Vieth, F. Zhang, D. E. Timm, Bioorg. Med. Chem. Lett. 2004, 14, 6095–6099.
- 15H. Khachatryan, B. Olszowy, C. A. Barrero, J. Gordon, O. Perez-Leal, Biomol. Eng. 2023, 13, DOI 10.3390/biom13020249.
- 16D. K. Sigalapalli, G. Kiranmai, G. Parimala Devi, R. Tokala, S. Sana, C. Tripura, G. S. Jadhav, M. Kadagathur, N. Shankaraiah, N. Nagesh, B. N. Babu, N. D. Tangellamudi, Bioorg. Med. Chem. 2021, 43, 116277.
- 17P. V. S. Ramya, L. Guntuku, S. Angapelly, C. S. Digwal, U. J. Lakshmi, D. K. Sigalapalli, B. N. Babu, V. G. M. Naidu, A. Kamal, Eur. J. Med. Chem. 2018, 143, 216–231.
- 18E. Bonandi, M. S. Christodoulou, G. Fumagalli, D. Perdicchia, G. Rastelli, D. Passarella, Drug Discovery Today 2017, 22, 1572–1581.
- 19A. Khan, F. Naaz, R. Basit, D. Das, P. Bisht, M. Shaikh, B. A. Lone, Y. R. Pokharel, Q. N. Ahmed, S. Parveen, I. Ali, S. K. Singh, G. Chashoo, S. Shafi, ACS Omega 2022, 7, 32078–32100.
- 20T. El Malah, H. F. Nour, A. A. E. Satti, B. A. Hemdan, W. A. El-Sayed, Molecules 2020, 25, 790.
- 21P. K. Bangalore, S. K. Vagolu, R. K. Bollikanda, D. K. Veeragoni, P. C. Choudante, S. Misra, D. Sriram, B. Sridhar, S. Kantevari, J. Nat. Prod. 2020, 83, 26–35.
- 22D. J. Viegas, V. D. da Silva, C. D. Buarque, D. C. Bloom, P. A. Abreu, Antivir. Ther. 2021, 25, 399–410.
- 23S. A. Khan, M. J. Akhtar, U. Gogoi, D. U. Meenakshi, A. Das, Pharmaceuticals 2023, 16, DOI 10.3390/ph16020179.
- 24W. Tan, Q. Li, W. Li, F. Dong, Z. Guo, Int. J. Biol. Macromol. 2016, 82, 404–410.
- 25L. Deswal, V. Verma, D. Kumar, C. P. Kaushik, A. Kumar, Y. Deswal, S. Punia, Arch. Pharm. 2020, 353, DOI 10.1002/ardp.202000090.
- 26M. M. Alam, Arch. Pharm. 2022, 355, DOI 10.1002/ardp.202100158.
- 27N. Kuntala, J. Mareddy, J. R. Telu, V. Banothu, S. Pal, J. S. Anireddy, J. Heterocycl. Chem. 2021, 58, 2018–2032.
- 28Z. Xu, S. J. Zhao, Y. Liu, Eur. J. Med. Chem. 2019, 183, 111700.
- 29T. Liang, X. Sun, W. Li, G. Hou, F. Gao, Front. Pharmacol. 2021, 12, 1–20.
- 30S. Zhao, J. Liu, Z. Lv, G. Zhang, Z. Xu, Eur. J. Med. Chem. 2023, 251, 115254.
- 31S. Li, X. Li, T. Zhang, M. O. Kamara, J. Liang, J. Zhu, F. Meng, Bioorg. Chem. 2020, 94, 103385.
- 32E. M. Othman, E. A. Fayed, E. M. Husseiny, H. S. Abulkhair, Bioorg. Chem. 2022, 123, 105762.
- 33G. Sun, L. Mao, W. Deng, S. Xu, J. Zhao, J. Yang, K. Yao, M. Yuan, W. Li, Front. Chem. 2022, 9, 1–13.
- 34M. A. Mahmoud, A. F. Mohammed, O. I. A. Salem, S. M. Rabea, B. G. M. Youssif, J. Mol. Struct. 2023, 1282, 135165.
- 35X. Hou, X. Gong, L. Mao, J. Zhao, J. Yang, Pharmaceuticals 2022, 15, 1316.
- 36R. Pingaew, V. Prachayasittikul, P. Mandi, C. Nantasenamat, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Bioorg. Med. Chem. 2015, 23, 3472–3480.
- 37P. Singh, B. Swain, P. S. Thacker, D. K. Sigalapalli, P. Purnachander Yadav, A. Angeli, C. T. Supuran, M. Arifuddin, Bioorg. Chem. 2020, 99, 103839.
- 38S. K. Avula, M. Khan, S. A. Halim, A. Khan, S. A. Al-Riyami, R. Csuk, B. Das, A. Al-Harrasi, Front. Chem. 2021, 9, DOI 10.3389/fchem.2021.642614.
- 39S. Ulloora, R. Shabaraya, A. V. Adhikari, Bioorg. Med. Chem. Lett. 2013, 23, 3368–3372.
- 40A. Nandikolla, S. Srinivasarao, Y. M. Khetmalis, B. K. Kumar, S. Murugesan, G. Shetye, R. Ma, S. G. Franzblau, K. V. G. C. Sekhar, Toxicol. in Vitro 2021, 74, 105137.
- 41A. Nandikolla, S. Srinivasarao, B. Karan Kumar, S. Murugesan, H. Aggarwal, L. L. Major, T. K. Smith, K. V. G. Chandra Sekhar, RSC Adv. 2020, 10, 38328–38343.
- 42T. Damghani, F. Moosavi, M. Khoshneviszadeh, M. Mortazavi, S. Pirhadi, Z. Kayani, L. Saso, N. Edraki, O. Firuzi, Sci. Rep. 2021, 11, 3644.
- 43A. Kamal, V. S. Reddy, S. Karnewar, S. S. Chourasiya, A. B. Shaik, G. B. Kumar, C. Kishor, M. K. Reddy, M. P. Narasimha Rao, A. Nagabhushana, K. V. S. Ramakrishna, A. Addlagatta, S. Kotamraju, ChemMedChem 2013, 8, 2015–2025.
- 44B. O. Sucu, Med. Chem. Res. 2022, 31, 2231–2242.
- 45K. F. Byth, J. D. Culshaw, S. Green, S. E. Oakes, A. P. Thomas, Bioorg. Med. Chem. Lett. 2004, 14, 2245–2248.
- 46I. Bin Sayeed, M. V. P. S. Vishnuvardhan, A. Nagarajan, S. Kantevari, A. Kamal, Bioorg. Chem. 2018, 80, 714–720.
- 47B. L. Staker, M. D. Feese, M. Cushman, Y. Pommier, D. Zembower, L. Stewart, A. B. Burgin, J. Med. Chem. 2005, 48, 2336–2345.
- 48J. L. Delgado, C. M. Hsieh, N. L. Chan, H. Hiasa, Biochem. J. 2018, 475, 373–398.
- 49I. Fabregat, World J. Gastroenterol. 2009, 15, 513–520.
- 50Y. Long, D. Wang, Med. Sci. Monit. 2019, 25, 7597–7604.
- 51J. Eberhardt, D. Santos-Martins, A. F. Tillack, S. Forli, J. Chem. Inf. Model. 2021, 61, DOI 10.1021/acs.jcim.1c00203.
- 52A. M. Vijesh, A. M. Isloor, S. Telkar, T. Arulmoli, H.-K. Fun, Arab. J. Chem. 2013, 6, 197–204.
- 53P. Sharma, C. LaRosa, J. Antwi, R. Govindarajan, K. A. Werbovetz, Molecules 2021, 26, 4213.
- 54E. A. Nikiforov, N. F. Vaskina, T. D. Moseev, M. V. Varaksin, I. I. Butorin, V. V. Melekhin, M. D. Tokhtueva, D. G. Mazhukin, A. Y. Tikhonov, V. N. Charushin, O. N. Chupakhin, Processes 2023, 11, 846.
- 55T. F. Vieira, S. F. Sousa, Appl. Sci. 2019, 9, 4538.
- 56E. Abma, S. Daminet, P. Smets, Y. Ni, H. de Rooster, Vet. Comp. Oncol. 2017, 15, 184–193.
- 57M. Hawash, N. Jaradat, M. Abualhasan, J. Amer, S. Levent, S. Issa, S. Ibrahim, A. Ayaseh, T. Shtayeh, A. Mousa, Open Chemistry 2021, 19, 855–863.
- 58M. Hawash, Biomol. Eng. 2022, 12, 1843.
- 59Z. Chen, T. Sun, G. Qing, J. Mater. Chem. B 2019, 7, 3710–3715.
- 60D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. MacIejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, Di. Le, A. Pon, C. Knox, M. Wilson, Nucleic Acids Res. 2018, 46, D1074–D1082.
- 61H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235–242.
- 62W. Forli, S. Halliday, R. Belew, A. Olson, Citeseer 2012.
- 63O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455–461.
- 64E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605–1612.
- 65D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson, Univ. California, San Fr. University of California 2018, 1.
- 66O. P. J. Van Linden, A. J. Kooistra, R. Leurs, I. J. P. De Esch, C. De Graaf, J. Med. Chem. 2014, 57, 249–277.