Photocatalysis: A Sustainable Approach for Removing Hazardous Polyaromatic Hydrocarbons
Punniyakotti Elumalai
Zhengzhou Resarch Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000 Anyang, Henan, China
Search for more papers by this authorCorresponding Author
Punniyakotti Parthipan
Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology Kattankulathur, Chengalpattu, Tamil Nadu, 603 203 India
Search for more papers by this authorLakshminarayanan Sivakumar
Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology Kattankulathur, Chengalpattu, Tamil Nadu, 603 203 India
Search for more papers by this authorSundaram Thanigaivel
Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology Kattankulathur, Chengalpattu, Tamil Nadu, 603 203 India
Search for more papers by this authorLalitha Gnanasekaran
Instituto de Alta Investigacion, Universidad de Tarapacá, Arica, 1000000 Chile
Search for more papers by this authorXueke Gao
Zhengzhou Resarch Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000 Anyang, Henan, China
Search for more papers by this authorCorresponding Author
Jinjie Cui
Zhengzhou Resarch Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000 Anyang, Henan, China
Search for more papers by this authorCheol Joo Moon
Core-Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
Search for more papers by this authorJayaraman Theerthagiri
Core-Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
Search for more papers by this authorCorresponding Author
Myong Yong Choi
Core-Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
Search for more papers by this authorPunniyakotti Elumalai
Zhengzhou Resarch Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000 Anyang, Henan, China
Search for more papers by this authorCorresponding Author
Punniyakotti Parthipan
Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology Kattankulathur, Chengalpattu, Tamil Nadu, 603 203 India
Search for more papers by this authorLakshminarayanan Sivakumar
Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology Kattankulathur, Chengalpattu, Tamil Nadu, 603 203 India
Search for more papers by this authorSundaram Thanigaivel
Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology Kattankulathur, Chengalpattu, Tamil Nadu, 603 203 India
Search for more papers by this authorLalitha Gnanasekaran
Instituto de Alta Investigacion, Universidad de Tarapacá, Arica, 1000000 Chile
Search for more papers by this authorXueke Gao
Zhengzhou Resarch Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000 Anyang, Henan, China
Search for more papers by this authorCorresponding Author
Jinjie Cui
Zhengzhou Resarch Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000 Anyang, Henan, China
Search for more papers by this authorCheol Joo Moon
Core-Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
Search for more papers by this authorJayaraman Theerthagiri
Core-Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
Search for more papers by this authorCorresponding Author
Myong Yong Choi
Core-Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
Search for more papers by this authorGraphical Abstract
Polyaromatic hydrocarbons (PAHs) pose significant toxicity to both the environment and humans. Utilizing eco-friendly carbon-based catalysts for the photocatalytic removal of PAHs represents a sustainable method. During this process, photons from sunlight excite electrons from the valence to the conduction band, generating electron-hole pairs. These pairs then react with water, oxygen, and hydroxyl groups, producing free radicals that effectively destroy PAHs.
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are omnipresent toxic pollutants found in numerous ecosystems, including soil, water, and living organisms. Due to their hydrophobic nature, PAHs tend to accumulate in aquatic environments, leading to high concentrations in aquatic sediments and subsequent bioaccumulation in organisms. This accumulation poses substantial risks to humans and aquatic life. Recent advances in photocatalytic methods, particularly those using nanocomposite materials, have shown promising outcomes in the degradation of PAHs. Photocatalysis, a process that uses UV and visible light to accelerate a chemical reaction, is effectively breaking these harmful compounds. This review focuses on the recent advances in the degradation of PAHs, the toxicological effects of PAHs on living organisms, and the mechanisms underlying nanocomposite-based photocatalysis. The utilization of nanocomposite for photocatalysis is an eco-friendly substitute to traditional methods for remediating PAH pollution in the ecosystem. This green approach using nanocomposite-based photocatalysis offers a sustainable and effective approach for the degradation of PAHs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1X. Zhang, X. Zhang, Y. Cai, S. Wang, Chem. Eng. J. 2022, 443, 136412.
- 2G. Kumar, T. Mehmood, M. Kumar, L. Cheng, K. Sathishkumar, A. Kumar, D. Yadav, J. Contam. Hydrol. 2021, 236, 103715.
- 3P. Parthipan, C. Prakash, D. Perumal, P. Elumalai, A. Rajasekar, L. Cheng, in Biotechnology for Sustainable Environment (Eds: S. J. Joshi, A. Deshmukh, H. Sarma), Springer Singapore, Singapore 2021, pp. 317–337.
- 4P. Elumalai, A. S. Kumar, P. Dhandapani, J. Cui, X. Gao, A. A. Prakash, R. Rajamohan, M. S. AlSalhi, S. Devanesan, A. Rajasekar, P. Parthipan, Environ. Res. 2024, 242, 117753.
- 5P. Elumalai, P. Parthipan, X. Gao, J. Cui, A. S. Kumar, P. Dhandapani, A. Rajasekar, H. Sarma, N. R. V. Ganapathy, J. Theerthagiri, A. Min, M. Y. Choi, Environ. Chem. Lett. 2024, DOI: 10.1007/s10311-024-01728-0.
- 6P. Paneque, P. Caballero, J. Parrado, I. Gómez, M. Tejada, J. Hazard. Mater. 2020, 389, 121820.
- 7S. M. Bamforth, I. Singleton, J. Chem. Technol. Biotechnol. 2005, 80, 723–736.
- 8P. Parthipan, L. Cheng, A. Rajasekar, S. Angaiah, in Biosurfactants a Sustain. Futur., (Eds: H. Sarma, M.N.V. Prasad), John Wiley & Sons Ltd, UK 2021, pp. 139–158.
- 9P. Parthipan, L. Cheng, P. Dhandapani, P. Elumalai, Environ. Pollut. 2022, 306, 119384.
- 10D. J. Vaishnavi, P. Parthipan, A. A. Prakash, K. Sathishkumar, A. Rajasekarin Handbook of Assisted and Amendment-Enhanced Sustainable Remediation Technology. (Ed: M. N. V. Prasad) John Wiley & Sons Ltd 2021, pp. 315–329.
- 11U. Shanker, V. Jassal, M. Rani, J. Environ. Manage. 2017, 204, 337–348.
- 12F. Yin, C. Gao, D. Feng, Y. Sun, Environ. Pollut. 2024, 357, 124386.
- 13R. X. S. Tulcan, L. Liu, X. Lu, Z. Ge, D. Y. Fernández Rojas, D. Mora Silva, J. Hazard. Mater. 2024, 475, 134937. DOI: 10.1016/j.jhazmat.2024.134937.
- 14S. K. Singh, R. K. Singh, An Overview on Remediation Technologies for Polycyclic Aromatic Hydrocarbons in Contaminated Lands: A Critical Approach, Springer, Netherlands 2023.
- 15A. B. Patel, S. Shaikh, K. R. Jain, C. Desai, D. Madamwar, Front. Microbiol. 2020, 11, 562813. DOI: 10.3389/fmicb.2020.562813.
- 16V. Dutta, J. Devasia, A. Chauhan, M. Jayalakshmi, V. L. Vasantha, A. Jha, A. Nizam, K. A. Lin, S. Ghotekar, Chem. Eng. J. Adv. 2022, 11, 100353.
- 17R. T. Kapoor, J. Zdarta, Chemosphere 2024, 358, 142101.
- 18Q. Yang, Y. Sun, W. Sun, Z. Qin, H. Liu, Y. Ma, X. Wang, Grain Oil Sci. Technol. 2021, 4, 182–190.
- 19Y. Wang, K. Zheng, W. Zhan, L. Huang, Y. Liu, T. Li, Z. Yang, Q. Liao, R. Chen, C. Zhang, Z. Wang, Ecotoxicol. Environ. Saf. 2021, 207, 111294.
- 20L. Brüss, R. Jeyaseelan, J. C. G. Kürschner, M. Utikal, L. Næsborg, ChemCatChem 2023, 15, 9–12.
10.1002/cctc.202201146 Google Scholar
- 21H. I. Eldos, N. Zouari, S. Saeed, M. A. Al-ghouti, Arab. J. Chem. 2022, 15, 103918.
- 22J. Theerthagiri, R. A. Senthil, A. Priya, J. Madhavan, R. J. V Michael, M. Ashokkumar, RSC Adv. 2014, 4, 38222–38229.
- 23T. Jayaraman, S. Arumugam Raja, A. Priya, M. Jagannathan, M. Ashokkumar, New J. Chem. 2015, 39, 1367–1374.
- 24P. Punniyakotti, R. Aruliah, S. Angaiah, 3 Biotech 2021, 11, 1–11.
- 25P. Parthipan, M. A. Al-Dosary, A. A. Al-Ghamdi, A. Subramania, J. King Saud Univ. - Sci. 2021, 33, 101438.
10.1016/j.jksus.2021.101438 Google Scholar
- 26P. Elumalai, A. S. Kumar, P. Dhandapani, J. Cui, X. Gao, A. A. Prakash, R. Rajamohan, M. S. AlSalhi, S. Devanesan, A. Rajasekar, P. Parthipan, Environ. Res. 2024, 242, 117753. DOI: 10.1016/j.envres.2023.117753.
- 27A. Munyengabe, P. P. Ndibewu, L. L. Sibali, P. Ngobeni, Results Eng. 2022, 15, 100530. DOI: 10.1016/j.rineng.2022.100530.
- 28O. Samuel, M. H. D. Othman, R. Kamaludin, H. Dzinun, A. Imtiaz, T. Li, T. El-badawy, A. U. Khan, M. H. Puteh, E. Yuliwati, T. A. Kurniawan, J. Clean. Prod. 2023, 415, 137567. DOI: 10.1016/j.jclepro.2023.137567.
- 29F. Jackulin, P. Senthil Kumar, B. Chitra, S. Karthick, G. Rangasamy, Environ. Res. 2024, 253, 119124. DOI: 10.1016/j.envres.2024.119124.
- 30A. Singh, J. Dhau, R. Kumar, R. Badru, P. Singh, Y. Kumar Mishra, A. Kaushik, Prog. Mater. Sci. 2024, 144, 101289.
- 31J. Ji, X. Sun, W. He, Y. Liu, J. Duan, W. Liu, L. D. Nghiem, Q. Wang, Z. Cai, Sep. Purif. Technol. 2022, 302, 122066.
- 32M. Wang, T. Li, Q. Hou, Y. Hao, Z. Wang, Chemosphere 2022, 308, 136360. DOI: 10.1016/j.chemosphere.2022.136360.
- 33J. Zhao, W. Tian, M. Chu, H. Chen, S. Yang, J. Jiang, Chemosphere 2022, 297, 134175. DOI: 10.1016/j.chemosphere.2022.134175.
- 34D. Li, Y. Fang, J. Lu, J. Sun, X. Zhao, N. Hou, J. Xing, Chem. Eng. J. 2023, 458, 141495.
- 35J. Huang, T. Zhou, W. Zhao, S. Cui, R. Guo, D. Li, N. Reddy, J. Colloid Interface Sci. 2022, 628, 315–326.
- 36M. Rani, U. Shanker, J. Environ. Chem. Eng. 2020, 8, 103810.
- 37X. Sun, W. He, X. Hao, H. Ji, W. Liu, Z. Cai, J. Hazard. Mater. 2021, 412, 125221.
- 38M. A. Suara, S. O. Ganiyu, S. Paul, J. L. Stafford, M. G. El-din, Sci. Total Environ. 2022, 819, 153029.
- 39H. Cai, L. Sun, Y. Wang, T. Song, M. Bao, X. Yang, Chem. Eng. J. 2019, 369, 1078–1092.
- 40Y. Song, W. He, X. Sun, J. Lei, L. D. Nghiem, J. Duan, W. Liu, Y. Liu, Z. Cai, Sep. Purif. Technol. 2023, 323, 124426.
- 41G. K. Jhanani, M. M. Al-Ansari, R. M. J. Lee, E. Sathiyamoorthi, I. Karuppusamy, Chemosphere 2024, 350, 141122.
- 42M. Rani Rachna, U. Shanker, Chem. Eng. J. 2018, 348, 754–764.
- 43B. Yin, J. Li, W. Guo, H. Dong, G. Zhang, Y. Xin, G. Zhang, Q. Chen, Environ. Sci. Pollut. Res. 2024, 31, 20621–20636.
- 44Y. Dai, Y. Wang, G. Zuo, J. Kong, Y. Guo, C. Sun, Q. Xian, Appl. Surf. Sci. 2022, 572, 151421.
- 45A. Ali, T. Raza, A. Ahmed, M. Safdar, C. Liu, D. Li, C. Li, Synth. Met. 2022, 287, 117072.
- 46J. Wang, H. Bao, Y. B. Man, J. Cai, J. Li, B. Sun, F. Wu, Pedosphere 2023, 33, 938–947.
- 47P. R. Yaashikaa, S. Karishma, R. Kamalesh, S. A. A. S. Vickram, K. Anbarasu, Chemosphere 2024, 355, 141796.
- 48G. Yu, Y. Kuzyakov, Earth-Sci. Rev. 2021, 214, 103525.
- 49K. Qiao, W. Tian, J. Bai, J. Dong, J. Zhao, X. Gong, S. Liu, Ecotoxicol. Environ. Saf. 2018, 149, 80–87.
- 50F. G. de Mendonça, I. T. da Cunha, R. R. Soares, J. C. Tristão, R. M. Lago, Bioresour. Technol. 2017, 246, 28–33.
- 51L. Qin, Y. Wu, Z. Hou, E. Jiang, Bioresour. Technol. 2020, 313, 123682.
- 52V. K. Ponnusamy, S. Nagappan, R. R. Bhosale, C. H. Lay, D. Duc Nguyen, A. Pugazhendhi, S. W. Chang, G. Kumar, Bioresour. Technol. 2020, 310, 123414.
- 53C. M. Hung, C. W. Chen, C. P. Huang, J. W. Cheng, C. Di Dong, J. Clean. Prod. 2022, 336, 130448.
- 54J. Y. Kim, S. Oh, Y. K. Park, J. Hazard. Mater. 2020, 384, 121356.
- 55O. Oginni, G. A. Yakaboylu, K. Singh, E. M. Sabolsky, G. Unal-Tosun, D. Jaisi, S. Khanal, A. Shah, J. Environ. Chem. Eng. 2020, 8, 103723.
- 56X. Zhang, X. Zhang, S. Zhao, Y. Cai, S. Wang, Environ. Pollut. 2022, 314, 120333.
- 57S. R. Barman, P. Das, A. Mukhopadhayay, Fuel 2021, 306, 121623.
- 58F. Li, M. Lin, Int. J. Environ. Res. Public Health 2020, 17, 2065. DOI: 10.3390/ijerph17062065.
- 59J. Guo, X. Wen, J. Yang, T. Fan, J. Environ. Manage. 2020, 272, 111058.
- 60J. Liu, S. Jiang, D. Chen, G. Dai, D. Wei, Y. Shu, Chem. Eng. J. 2020, 381, 122637.
- 61Y. Shi, H. Xue, Y. Yao, C. Jing, R. Liu, Q. Niu, H. Lu, Chem. Eng. J. 2023, 477, 147229.
- 62X. Shang, S. Wu, Y. Liu, K. Zhang, M. Guo, Y. Zhou, J. Zhu, X. Li, R. Miao, J. Hazard. Mater. 2024, 466, 133684.
- 63D. R. Lobato-Peralta, A. Ayala-Cortés, A. Longoria, D. E. Pacheco-Catalán, P. U. Okoye, H. I. Villafán-Vidales, C. A. Arancibia-Bulnes, A. K. Cuentas-Gallegos, J. Energy Storage 2022, 52, 104888. DOI: 10.1016/j.est.2022.104888.
10.1016/j.est.2022.104888 Google Scholar
- 64H. Shokry, M. Elkady, E. Salama, Sci. Rep. 2020, 10, 1–17.
- 65A. Singh, J. Dhau, R. Kumar, R. Badru, P. Singh, Y. Kumar Mishra, A. Kaushik, Prog. Mater. Sci. 2024, 144, 101289.
- 66S. Bonaglia, E. Broman, B. Brindefalk, E. Hedlund, T. Hjorth, C. Rolff, F. J. A. Nascimento, K. Udekwu, J. S. Gunnarsson, Chemosphere 2020, 248, 126023. DOI: 10.1016/j.chemosphere.2020.126023.
- 67E. Mirzaee, M. Sartaj, Environ. Technol. Innov. 2022, 25, 102174. DOI: 10.1016/j.eti.2021.102174.
- 68Y. Zhang, J. Ji, S. Sun, Food Control 2023, 147, 109605. DOI: 10.1016/j.foodcont.2023.109605.
- 69A. Munyengabe, P. Papoh, L. Lunga, P. Ngobeni, Results Eng. 2022, 15, 100530.
- 70C. Wang, Y. Li, H. Tan, A. Zhang, Y. Xie, B. Wu, H. Xu, Chem. Eng. J. 2019, 359, 1065–1074.
- 71J. Liu, C. Zhang, H. Jia, E. Lichtfouse, V. K. Sharma, Crit. Rev. Environ. Sci. Technol. 2023, 53, 676–699.
- 72Y. Zhang, J. Chen, Y. Wang, H. Dou, Z. Lin, X. Gao, X. Chen, M. Guo, Appl. Surf. Sci. 2024, 647, 158985.
- 73Z. An, I. Sánchez-Montes, P. Chelme-Ayala, C. Chen, M. Gamal El-Din, Chem. Eng. J. 2024, 489, 151308. DOI: 10.1016/j.cej.2024.151308.
- 74C. Yao, B. Wang, J. Zhang, M. Faheem, Q. Feng, M. Hassan, X. Zhang, X. Lee, S. Wang, J. Environ. Manage. 2024, 357, 120610.
- 75P. Singh, A. Mukherjee, A. Mahato, A. Pramanik, D. Dhak, Chem. Afr. 2023, 6, 561–578.
- 76Z. Qin, Z. Zhao, W. Jiao, Z. Han, L. Xia, Y. Fang, Environ. Res. 2020, 183, 109135.
- 77Z. Qin, Z. Zhao, W. Jiao, Z. Han, L. Xia, Y. Fang, Bioresour. Technol. 2020, 301, 122736.
- 78D. Thirumurugan, D. Kokila, T. Balaji, R. Rajamohan, M. S. AlSalhi, S. Devanesan, A. Rajasekar, P. Parthipan, Chemosphere 2023, 344, 140340. DOI: 10.1016/j.chemosphere.2023.140340.
- 79B. Muthukumar, A. Satheeshkumar, P. Parthipan, B. Laishram, R. Duraimurugan, S. Devanesan, M. S. AlSalhi, R. Rajamohan, A. Rajasekar, Environ. Res. 2024, 244, 117911.