Nickel-Catalyzed Selective Cross-Coupling of Chlorosilanes with Organoaluminum Reagents
Corresponding Author
Dr. Yuki Naganawa
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, 305-8565 Japan
Search for more papers by this authorDr. Haiqing Guo
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, 305-8565 Japan
Search for more papers by this authorKei Sakamoto
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, 305-8565 Japan
Search for more papers by this authorCorresponding Author
Dr. Yumiko Nakajima
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, 305-8565 Japan
Search for more papers by this authorCorresponding Author
Dr. Yuki Naganawa
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, 305-8565 Japan
Search for more papers by this authorDr. Haiqing Guo
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, 305-8565 Japan
Search for more papers by this authorKei Sakamoto
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, 305-8565 Japan
Search for more papers by this authorCorresponding Author
Dr. Yumiko Nakajima
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, 305-8565 Japan
Search for more papers by this authorGraphical Abstract
Nickel does the trick: Nickel-catalyzed cross-coupling reactions of chlorosilanes with organoaluminum reagents were developed. An electron-rich Ni(0)/PCy3 complex was found to be an effective catalyst for the desired transformation. The selective synthesis of a series of alkylmonochlorosilanes from di- and trichlorosilanes was achieved using the present catalytic systems.
Abstract
Nickel-catalyzed cross-coupling reactions of chlorosilanes with organoaluminum reagents were developed. An electron-rich Ni(0)/PCy3 complex was found to be an effective catalyst for the desired transformation. The reaction of dichlorosilanes 1 proceeded to give the corresponding monosubstituted products 2. Trichlorosilanes 4 underwent selective double substitution to furnish the corresponding monochlorosilanes 2. Overall, the selective synthesis of a series of alkylmonochlorosilanes 2 from di- and trichlorosilanes was achieved using the present catalytic systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc201900047-sup-0001-misc_information.pdf2.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. J. Clarson, M. J. Owen, S. D. Smith, M. E. Van Dyke, Advances in Silicones and Silicone-Modified Materials; American Chemical Society: Washington, DC, 2010;
- 1bJ. E. Mark, D. W. Schaefer, G. Lin, The Polysiloxanes; Oxford University Press: New York, 2015.
- 2Si−Cl bond forming reactions have been also reported as a means of the preparation of organochlorosilanes. Examples, see:
- 2aW. Wang, Y. Tan, Z. Xie, Z. Zhang, J. Organomet. Chem. 2014, 769, 29;
- 2bV. Pongkittiphan, E. A. Theodorakis, W. Chavasiri, Tetrahedron Lett. 2009, 50, 5080.
- 3
- 3aM. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry; Wiley-Interscience: New York, 2000;
- 3bE. G. Rochow, W. F. Gilliam, J. Am. Chem. Soc. 1945, 67, 1772;
- 3cW. Patnode, D. F. Wilcock, J. Am. Chem. Soc. 1946, 68, 358;
- 3dC. Krüger, E. G. Rochow, Inorg. Chem. 1963, 2, 1295;
- 3eD. Seyferth, Organometallics 2001, 20, 4978.
- 4
- 4aB. T. Nguyen, C. J. Bedbury, J. P. Cannady, WO2003084967 A1, 2003;
- 4bB. T. Nguyen, WO2005068476 A1, 2005;
- 4cD. C. Bauer, C. J. Bedbury, B. T. Nguyen, WO2006083665 A1, 2005.
- 5
- 5aB. Wrackmeyer, E. Khan, W. Z. Milius, Naturforscher 2008, 63b, 1267;
- 5bM. Ochiai, E. Akiyama, Trans. Mater. Res. Soc. Jpn. 2012, 37, 451;
- 5cS. D. Rosenberg, J. J. Wakburn, H. E. Ramsden, J. Org. Chem. 1957, 22, 1606;
- 5dA. Tuulmets, A. Ploom, D. Panov, J. Järv, Synlett 2010, 291;
- 5eU. Pöschl, K. Hassler, Organometallics 1995, 14, 4948.
- 6S. Bähr, W. Xue, M. Oestreich ACS Catal. 2019, 9, 16.
- 7
- 7aH. Yamashita, T. Kobayashi, T. Hayashi, M. Tanaka, Chem. Lett. 1991, 20, 761;
- 7bH. Yamashita, M. Tanaka, M. Goto, Organometallics 1997, 16, 4696.
- 8
- 8aJ. R. McAtee, S. E. S. Martin, D. T. Ahneman, K. A. Johnson, D. A. Watson, Angew. Chem. Int. Ed. 2012, 51, 3663,
- 8bS. E. S. Martin, D. A. Watson, J. Am. Chem. Soc. 2013, 135, 13330;
- 8cJ. R. McAtee, S. E. S. Martin, A. P. Cinderella, W. B. Reid, K. A. Johnson, D. A. Watson, Tetrahedron 2014, 70, 4250;
- 8dB. Vulovic, D. A. Watson, Eur. J. Org. Chem. 2017, 4996.
- 9A. P. Cinderella, B. Vulovic, D. A. Watson, J. Am. Chem. Soc. 2017, 139, 7741.
- 10B. Vulovic, A. P. Cinderella, D. A. Watson, ACS Catal. 2017, 7, 8113.
- 11K. Matsumoto, J. Huang, Y. Naganawa, H. Guo, T. Beppu, K. Sato, S. Shimada, Y. Nakajima, Org. Lett. 2018, 20, 2481.
- 12
- 12aJ. K. Stille, K. S. Y. Lau, J. Am. Chem. Soc. 1976, 98, 5841;
- 12bH. Yamashita, T. Hayashi, T. Kobayashi, M. Tanaka, M. Goto, J. Am. Chem. Soc. 1988, 110, 4417;
- 12cA. A. Zlota, F. Frolow, D. Milstein, J. Chem. Soc. Chem. Commun. 1989, 1826;
- 12dS. Gatard, C.-H. Chen, B. M. Foxman, O. V. Ozerov, Organometallics 2008, 27, 6257.
- 13
- 13aR. Wakabayashi, K. Kawahara, K. Kuroda, Angew. Chem. Int. Ed. 2010, 49, 5273,
- 13bR. Wakabayashi, Y. Sugiura, T. Shibue, K. Kuroda, Angew. Chem. Int. Ed. 2011, 50, 10708,
- 14Reviews, see:
- 14aE.-I. Negishi, Aldrichimica Acta 2005, 38, 71;
- 14bE.-I. Negishi, Bull. Chem. Soc. Jpn. 2007, 80, 233;
- 14cP. Knochel, T. Blümke, K. Groll, Y. H. Chen , Top. Organomet. Chem. 2013, 41, 173;
- 14dP. von Zezschwitz , Top. Organomet. Chem. 2013, 41, 245.
- 15Selected examples of cross coupling with organoaluminum reagents, see:
- 15aT. Okita, K. Muto, J. Yamaguchi, Org. Lett. 2018, 20, 3132;
- 15bH. Ogawa, Z.-K. Yang, H. Minami, K. Kojima, T. Saito, C. Wang, M. Uchiyama, ACS Catal. 2017, 7, 3988;
- 15cX. Liu, C.-C. Hsiao, I. Kalvet, M. Leiendecker, L. Guo, F. Schoenebeck, M. Rueping, Angew. Chem. Int. Ed. 2016, 55, 6093,
- 15dR. Shang, L. Ilies, E. Nakamura, J. Am. Chem. Soc. 2015, 137, 7660;
- 15eT. Morioka, A. Nishizawa, K. Nakamura, M. Tobisu, N. Chatani, Chem. Lett. 2015, 44, 1729;
- 15fK. Groll, T. D. Blümke, A. Unsinn, D. Haas, P. Knochel, Angew. Chem. Int. Ed. 2012, 51, 11157,
- 15gD. B. Biradar, H.-M. Gau, Chem. Commun. 2011, 47, 10467;
- 15hS. Kawamura, K. Ishizuka, H. Takaya, M. Nakamura, Chem. Commun. 2010, 46, 6054;
- 15iH. Gao, P. Knochel, Synlett 2009, 1321;
- 15jW.-T. Shu, S. Zhou, H.-M. Gau, Synthesis 2009, 4075.
- 16
- 16aL. N. Lewis, J. Stein, Y. Gao, R. E. Colborn, G. Hutchins, Platinum Met. Chem. 1997, 41, 66;
- 16bY. Nakajima, S. Shimada, RSC Adv. 2015, 5, 20603;
- 16cD. Troegel, J. Stohrer, Coord. Chem. Rev. 2011, 255, 1440;
- 16dB. G. Marciniec, Coord. Chem. Rev. 2005, 249, 2374;
- 16eD. Xiaoyong, H. Zheng, ACS Catal. 2017, 7, 1227.