Acyl-Imidazoles: A Privileged Ester Surrogate for Enantioselective Synthesis
Jimmy Lauberteaux
ICGM – UMR 5253, Univ Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France
Search for more papers by this authorDelphine Pichon
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
Search for more papers by this authorDr. Olivier Baslé
Laboratoire de Chimie de Coordination, CNRS, UPR 8241, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
Search for more papers by this authorDr. Marc Mauduit
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
Search for more papers by this authorCorresponding Author
Dr. Renata Marcia de Figueiredo
ICGM – UMR 5253, Univ Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Jean-Marc Campagne
ICGM – UMR 5253, Univ Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France
Search for more papers by this authorJimmy Lauberteaux
ICGM – UMR 5253, Univ Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France
Search for more papers by this authorDelphine Pichon
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
Search for more papers by this authorDr. Olivier Baslé
Laboratoire de Chimie de Coordination, CNRS, UPR 8241, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
Search for more papers by this authorDr. Marc Mauduit
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
Search for more papers by this authorCorresponding Author
Dr. Renata Marcia de Figueiredo
ICGM – UMR 5253, Univ Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Jean-Marc Campagne
ICGM – UMR 5253, Univ Montpellier, CNRS, ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France
Search for more papers by this authorGraphical Abstract
What a privilege! Since their first use in asymmetric Friedel-Crafts reactions, acyl-imidazoles have appeared as powerful ester/amide surrogates. Indeed, the imidazole moiety displays stability and special activation features that allow enhanced reactivity and selectivity in traditional ester/amide functionalization. An overview of the contemporary and growing interest for acyl-imidazoles in metal- and organo-catalyzed transformations, as well as post-functionalization expediencies will be highlighted.
Abstract
Since the first report by Evans in asymmetric Friedel-Crafts reactions, the use of acyl-imidazoles has blossomed as powerful ester/amide surrogates. The imidazole scaffold indeed displays stability and special activation features allowing both better reactivity and selectivity in traditional ester/amide functionalizations: α-(enolate chemistry), β-(conjugate additions), α,β-(cycloadditions) or γ/δ-(vinylogous). An overview of the contemporary and growing interest in acyl-imidazoles in metal- and organo-catalyzed transformations (bio-hybrid catalytic systems will be fully described in a back-to-back Minireview) will be highlighted. Moreover, post-functionalization expediencies are also going to be discussed in this Minireview.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. Hayakawa, T. Michiue, M. Okamoto, S. Hatakeyama, S. Ohta, Heterocycles 1988, 27, 457–473.
- 2S. Ohta, S. Hayakawa, K. Nishimura, M. Okamoto, Chem. Pharm. Bull. 1987, 35, 1058–1069.
- 3A. Miyashita, Y. Suzuki, I. Nagasaki, C. Ishiguro, K.-i. Iwamoto, T. Higashino, Chem. Pharm. Bull. 1997, 45, 1254–1258.
- 4D. A. Evans, K. R. Fandrick, H.-J. Song, K. A. Scheidt, R. Xu, J. Am. Chem. Soc. 2007, 129, 10029–10041.
- 5D. A. Evans, K. R. Fandrick, H.-J. Song, J. Am. Chem. Soc. 2005, 127, 8942–8943.
- 6
- 6aS. Drissi-Amraoui, M. Morin, C. Crévisy, O. Baslé, R. M. de Figueiredo, M. Mauduit, J.-M. Campagne, Angew. Chem. Int. Ed. 2015, 54, 11830–11834;
- 6bS. Drissi-Amraoui, T. E. Schmid, J. Lauberteaux, C. Crévisy, O. Baslé, R. M. de Figueiredo, S. Halbert, H. Gérard, M. Mauduit, J.-M. Campagne , Adv. Synth. Catal. 2016, 358, 2519–2540.
- 7D. A. Evans, K. R. Fandrick, Org. Lett. 2006, 8, 2249–2252.
- 8H. B. Albada, F. Rosati, D. Coquière, G. Roelfes, R. M. J. Liskamp, Eur. J. Org. Chem. 2011, 1714–1720.
- 9B. Zhang, F. Han, L. Wang, D. Li, D. Yang, X. Yang, J. Yang, X. Li, D. Zhao, R. Wang, Chem. Eur. J. 2015, 21, 17234–17238.
- 10
- 10aM. Mauduit, O. Baslé, H. Clavier, C. Crévisy, A. Denicourt-Nowicki, in Comprehensive Organic Synthesis II, vol. 4 (eds.: P. Knochel, G. A. Molander), Elsevier, 2014, pp 186;
- 10bFor a seminal review dealing with Cu-ACA in natural product synthesis, see: B. C. Calvo, J. Buter, A. J. Minnaard, Applications to the synthesis of natural products in Copper-Catalyzed Asymmetric Synthesis (Eds: A. Alexakis, N. Krause, S. Woodward) Wiley, 2014, Chapter 14, pp. 373–447.
- 11
- 11aH. Ohmiya, M. Yoshida, M. Sawamara, Org. Lett. 2011, 13, 482;
- 11bM. Yoshida, H. Ohmiya, M. Sawamara, J. Am. Chem. Soc. 2012, 134, 11896.
- 12X. Xu, W.-H. Hu, M. P. Doyle, Angew. Chem. Int. Ed. 2011, 50, 6392–6395;
- 13S. Rout, A. Das, V. K. Singh, Chem. Commun. 2017, 53, 5143–5146.
- 14S. Rout, A. Das, V. K. Singh, J. Org. Chem. 2018, 83, 5058–5071.
- 15D. A. Evans, H.-J. Song, K. R. Fandrick, Org. Lett. 2006, 8, 3351–3354.
- 16X. Shen, H. Huo, C. Wang, B. Zhang, K. Harms, E. Meggers, Chem. Eur. J. 2015, 21, 9720–9726.
- 17B. M. Trost, T. M. Lam, J. Am. Chem. Soc. 2012, 134, 11319–11321.
- 18B. M. Trost, K. Lehr, D. J. Michaelis, J. Xu, A. K. Buckl, J. Am. Chem. Soc. 2010, 132, 8915–8917.
- 19A. J. Simpson, H. W. Lam, Org. Lett. 2013, 15, 2586–2589.
- 20X. Hou, H. Ma, Z. Zhang, L. Xie, Z. Qin, B. Fu, Chem. Commun. 2016, 52, 1470–1473.
- 21H. Ma, L. Xie, Z. Zhang, L.-g. Wu, B. Fu, Z. Qin, J. Org. Chem. 2017, 82, 7353–7362.
- 22D. Yang, L. Wang, D. Li, F. Han, D. Zhao, R. Wang, Chem. Eur. J. 2015, 21, 1458–1462.
- 23J. Wang, P. Wang, L. Wang, D. Li, K. Wang, Y. Wang, H. Zhu, D. Yang, R. Wang, Org. Lett. 2017, 19, 4826–4829.
- 24For accounts on the use of such chiral-at-metal complexes, see:
- 24aL. Zhang, E. Meggers, Acc. Chem. Res. 2017, 50, 320–330;
- 24bE. Meggers, Angew. Chem. Int. Ed. 2017, 56, 5668–5675;
- 24cS. Chen, X. Huang, E. Meggers, K. N. Houk, J. Am. Chem. Soc. 2017, 139, 17902–17907.
- 25H. Huo, C. Fu, K. Harms, E. Meggers, J. Am. Chem. Soc. 2014, 136, 2990–2993.
- 26C. Wang, L.-A. Chen, H. Huo, X. Shen, K. Harms, L. Gong, E. Meggers, Chem. Sci. 2015, 6, 1094–1100.
- 27V. A. Larionov, T. Cruchter, T. Mietke, E. Meggers, Organometallics 2017, 36, 1457–1460.
- 28Z. Zhou, Y. Li, L. Gong, E. Meggers, Org. Lett. 2017, 19, 222–225.
- 29J. Ma, X. Shen, K. Harmsa, E. Meggers, Dalton Trans. 2016, 45, 8320–8323.
- 30S.-W. Li, Q. Wan, Q. Kang, Org. Lett. 2018, 20, 1312–1315.
- 31X. Ding, H. Lin, L. Gong, E. Meggers, Asian J. Org. Chem. 2015, 4, 434–437.
- 32T. Deng, G. K. Thota, Y. Lia, Q. Kang, Org. Chem. Front. 2017, 4, 573–577.
- 33S.-W. Li, J. Gong, Q. Kang, Org. Lett. 2017, 19, 1350–1353.
- 34Y. Tan, K. Harms, E. Meggers, Eur. J. Inorg. Chem. 2018, 2500–2504.
- 35For instance, see: D. Müller, A. Alexakis, Org. Lett. 2012, 14, 1842–1845.
- 36K. Li, Q. Wan, Q. Kang, Org. Lett. 2017, 19, 3299–3302.
- 37H. Huo, K. Harms, E. Meggers, J. Am. Chem. Soc. 2016, 138, 6936–6939.
- 38Z. Zhou, Y. Li, B. Han, L. Gong, E. Meggers, Chem. Sci. 2017, 8, 5757–5763.
- 39S.-X. Lin, G.-J. Sun, Q. Kang, Chem. Commun. 2017, 53, 7665–7668.
- 40W. Yuan, Z. Zhou, L. Gong, E. Meggers, Chem. Commun. 2017, 53, 8964–8967.
- 41F. F. de Assis, X. Huang, M. Akiyama, R. A. Pilli, E. Meggers, J. Org. Chem. 2018, 83, 10922–10932.
- 42G.-J. Sun, J. Gong, Q. Kang, J. Org. Chem. 2017, 82, 796–803.
- 43E. L. Tyson, E. P. Farney, T. P. Yoon, Org. Lett. 2012, 14, 1110–1113.
- 44X. Huang, T. R. Quinn, K. Harms, R. D. Webster, L. Zhang, O. Wiest, E. Meggers, J. Am. Chem. Soc. 2017, 139, 9120–9123.
- 45Y. Huang, L. Song, L. Gong, E. Meggers, Chem. Asian J. 2015, 10, 2738–2743.
- 46H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, E. Meggers, Nature 2014, 515, 100–103.
- 47H. Huo, C. Wang, K. Harms, E. Meggers, J. Am. Chem. Soc. 2015, 137, 9551–9554.
- 48H. Huo, X. Huang, X. Shen, K. Harms, E. Meggers, Synlett 2016, 27, 749–753.
- 49C. Wang, Y. Zheng, H. Huo, P. Röse, L. Zhang, K. Harms, G. Hilt, E. Meggers, Chem. Eur. J. 2015, 21, 7355–7359.
- 50Y. Tan, W. Yuan, L. Gong, E. Meggers, Angew. Chem. Int. Ed. 2015, 54, 13045–13048;
- 51X. Huang, R. D. Webster, K. Harms, E. Meggers, J. Am. Chem. Soc. 2016, 138, 12636–12642.
- 52X. Shen, K. Harms, M. Marsch, E. Meggers, Chem. Eur. J. 2016, 22, 9102–9105.
- 53J. Ma, A. R. Rosales, X. Huang, K. Harms, R. Riedel, O. Wiest, E. Meggers, J. Am. Chem. Soc. 2017, 139, 17245–17248.
- 54X. Zhang, J. Qin, X. Huang, E. Meggers, Eur. J. Org. Chem. 2018, 571–577.
- 55G.-Q. Xu, H. Liang, J. Fang, Z.-L. Jia, J.-Q. Chen, P.-F. Xu, Chem. Asian J. 2016, 11, 3355–3358.
- 56H. Lin, Z. Zhou, J. Cai, B. Han, L. Gong, E. Meggers, J. Org. Chem. 2017, 82, 6457–6467.
- 57L. Feng, X. Dai, E. Meggers, L. Gong, Chem. Asian J. 2017, 12, 963–967.
- 58J. Gong, S.-W. Li, S. Qurban, Q. Kang, Eur. J. Org. Chem. 2017, 3584–3593.
- 59G. K. Thota, G.-J. Sun, T. Deng, Y. Li, Q. Kang, Adv. Synth. Catal. 2018, 1094–1098.
- 60M. B. Andrus, M. A. Christiansen, E. J. Hicken, M. J. Gainer, D. K. Bedke, K. C. Harper, S. R. Mikkelson, D. S. Dodson, D. T. Harris, Org. Lett. 2007, 9, 4865–4868.
- 61M. A. Christiansen, A. W. Butler, A. R. Hill, M. B. Andrus, Synlett 2009, 4, 653–657.
- 62M. A. Christiansen, M. B. Andrus, Tetrahedron Lett. 2012, 53, 4805–4808.
- 63M. Uyanik, H. Okamoto, T. Yasui, K. Ishihara, Science 2010, 328, 1376–1379.
- 64M. Uyanik, H. Hayashi, H. Iwata, K. Ishihara, Chem. Lett. 2016, 45, 353–355.
- 65M. Uyanik, H. Hayashi, K. Ishihara, Science 2014, 345, 291–294.
- 66M. Uyanik, D. Suzuki, T. Yasui, K. Ishihara, Angew. Chem. Int. Ed. 2011, 50, 5331–5334;
- 67M. Uyanik, K. Ishihara, ChemCatChem 2012, 4, 177–185.
- 68J.-L. Shih, T. S. Nguyen, J. A. May, Angew. Chem. Int. Ed. 2015, 54, 9931–9935;
- 69O. Quinonero, M. Jean, N. Vanthuyne, C. Roussel, D. Bonne, T. Constantieux, C. Bressy, X. Bugaut, J. Rodriguez, Angew. Chem. Int. Ed. 2016, 55, 1401–1405;
- 70J. Gong, K. Li, S. Qurban, Q. Kang, Chin. J. Chem. 2016, 34, 1225–1235.
- 71L. Song, L. Gong, E. Meggers, Chem. Commun. 2016, 52, 7699–7702.
- 72S. Qurban, J. Gong, Y. Du, Q. Kang, Org. Chem. Front. 2018, 5, 2870–2874.
- 73X.-Y. Guan, L.-P. Yang, W. Hu, Angew. Chem. Int. Ed. 2010, 49, 2190–2192;
- 74J. Mansot, J.-J. Vasseur, S. Arseniyadis, M. Smietana, ChemCatChem 2019, doi: 10.1002/cctc.201900743.