Directed Evolution to Reverse Epoxide Hydrolase Enantioselectivity for meso-3,4-Epoxytetrahydrofuran
Corresponding Author
Dr. Kaori Hiraga
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorCorresponding Author
Dr. Tetsuji Itoh
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorDr. Deeptak Verma
Modeling and Informatics, Merck & Co., Inc Rahway, NJ 07065, USA
Search for more papers by this authorDr. Wei Wang
API process research & development – Biocatalysis, Shanghai STA Pharmaceutical R&D Co., Ltd, Shanghai 200131, P. R. China
Search for more papers by this authorChen Huang
API process research & development – Biocatalysis, Shanghai STA Pharmaceutical R&D Co., Ltd, Shanghai 200131, P. R. China
Search for more papers by this authorDr. Michael Ardolino
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorDr. Yong-Li Zhong
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorDr. Grant Murphy
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorCorresponding Author
Dr. Kaori Hiraga
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorCorresponding Author
Dr. Tetsuji Itoh
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorDr. Deeptak Verma
Modeling and Informatics, Merck & Co., Inc Rahway, NJ 07065, USA
Search for more papers by this authorDr. Wei Wang
API process research & development – Biocatalysis, Shanghai STA Pharmaceutical R&D Co., Ltd, Shanghai 200131, P. R. China
Search for more papers by this authorChen Huang
API process research & development – Biocatalysis, Shanghai STA Pharmaceutical R&D Co., Ltd, Shanghai 200131, P. R. China
Search for more papers by this authorDr. Michael Ardolino
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorDr. Yong-Li Zhong
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorDr. Grant Murphy
Process Research & Development, Merck & Co., Inc, Rahway, NJ 07065, USA
Search for more papers by this authorGraphical Abstract
The epoxide hydrolase from Alphaproteobacteria bacterium was identified to convert meso-3,4-epoxytetrahydrofuran (1) to (3R,4R)-tetrahydrofurandiol [(RR)-2] predominantly. The enzyme was engineered via directed evolution to revert its original enantioselectivity to generate (3S,4S)-tetrahydrofurandiol [(SS)-2] in quantitative yield and to tolerate an extremely high substrate concentration desired for industrial processes.
Abstract
Chiral vicinal diols are important intermediates in the synthesis of pharmaceuticals. Epoxide hydrolases catalyze hydrolytic ring opening of epoxides to produce the corresponding vicinal diols, providing an attractive way to access these building blocks under mild conditions in a stereoselective and atom-efficient manner. In this study, an epoxide hydrolase is identified and engineered to form (3S,4S)-tetrahydrofurandiol in high optical purity via the desymmetrization of meso-3,4-epoxytetrahydrofuran. In nine rounds of directed evolution, the enzyme's native (3R,4R)-stereopreference was reversed and its activity was dramatically improved to achieve quantitative yield under remarkably high 500 g/L substrate concentration and low enzyme loading. Computational modelling provides insights on the changes in enzyme-substrate interaction that result in divergent enantioselectivities afforded by evolved variants.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc202300238-sup-0001-misc_information.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Fryszkowska, P. N. Devine, Curr. Opin. Chem. Biol. 2020, 55, 151–160;
- 1bS. Simic, E. Zukic, L. Schmermund, K. Faber, C. K. Winkler, W. Kroutil, Chem. Rev. 2022, 122, 1052–1126.
- 2
- 2aC. H. An, K. M. Maloney, Curr. Opin. Green Sustain. Chem. 2022, 34, 100591;
- 2bS. Galanie, D. Entwistle, J. Lalonde, Nat. Prod. Rep. 2020, 37, 1122–1143;
- 2cJ. A. McIntosh, A. E. Owens, Curr. Opin. Green Sustain. Chem. 2021, 29.
- 3M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobsen, Science 1997, 277, 936–938.
- 4
- 4aL. E. Martinez, J. L. Leighton, D. H. Carsten, E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5897–5898;
- 4bS. Matsunaga, J. Das, J. Roels, E. M. Vogl, N. Yamamoto, T. Iida, K. Yamaguchi, M. Shibasaki, J. Am. Chem. Soc. 2000, 122, 2252–2260;
- 4cM. R. Monaco, S. Prevost, B. List, Angew. Chem. Int. Ed. 2014, 53, 8142–8145; Angew. Chem. 2014, 126, 8280–8283;
- 4dK. Nozaki, K. Nakano, T. Hiyama, J. Am. Chem. Soc. 1999, 121, 11008–11009;
- 4eW. A. Nugent, J. Am. Chem. Soc. 1992, 114, 2768–2769;
- 4fJ. M. Ready, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 2687–2688;
- 4gJ. M. Ready, E. N. Jacobsen, Angew. Chem. Int. Ed. 2002, 41, 1374–1377;
10.1002/1521-3773(20020415)41:8<1374::AID-ANIE1374>3.0.CO;2-8 CASPubMedWeb of Science®Google ScholarAngew. Chem. 2002, 114, 1432–1435.
- 5
- 5aA. Archelas, G. Iacazio, M. Kotik, Green Biocatal. 2016, pp. 179–229;
10.1002/9781118828083.ch8 Google Scholar
- 5bA. Steinreiber, K. Faber, Curr. Opin. Biotechnol. 2001, 12, 552–558;
- 5cB. van Loo, J. Kingma, M. Arand, M. G. Wubbolts, D. B. Janssen, Appl. Environ. Microbiol. 2006, 72, 2905–2917;
- 5dW. J. Choi, C. Y. Choi, Biotechnol. Bioprocess Eng. 2005, 10, 167–179;
- 5eE. Y. Lee, M. L. Shuler, Biotechnol. Bioeng. 2007, 98, 318–327.
- 6
- 6aS. K. Wu, A. T. Li, Y. S. Chin, Z. Li, ACS Catal. 2013, 3, 752–759;
- 6bH. Arabnejad, E. Bombino, D. I. Colpa, P. A. Jekel, M. Trajkovic, H. J. Wijma, D. B. Janssen, ChemBioChem 2020, 21, 1893–1904;
- 6cL. Zhao, B. Han, Z. Huang, M. Miller, H. Huang, D. S. Malashock, Z. Zhu, A. Milan, D. E. Robertson, D. P. Weiner, M. J. Burk, J. Am. Chem. Soc. 2004, 126, 11156–11157;
- 6dH. B. Zheng, M. T. Reetz, J. Am. Chem. Soc. 2010, 132, 15744–15751.
- 7D. E. White, P. M. Tadross, Z. Lu, E. N. Jacobsen, Tetrahedron 2014, 70, 4165–4180.
- 8R. K. Kuipers, H. J. Joosten, W. J. H. van Berkel, N. G. H. Leferink, E. Rooijen, E. Ittmann, F. van Zimmeren, H. Jochens, U. Bornscheuer, G. Vriend, V. A. P. M. dos Santos, P. J. Schaap, Proteins 2010, 78, 2101–2113.
- 9J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Nature 2021, 596, 583–589.
- 10A. G. Murzin, S. E. Brenner, T. Hubbard, C. Chothia, J. Mol. Biol. 1995, 247, 536–540.
- 11T. A. Collier, T. J. Piggot, J. R. Allison, Protein Nanotechnology. Methods in Molecular Biology, Vol. 2073 (Eds.: J. A. Gerrard, L. J. Domigan), Springer US, New York, NY, 2020, pp. 311–327.
- 12M. Nardini, I. S. Ridder, H. J. Rozeboom, K. H. Kalk, R. Rink, D. B. Janssen, B. W. Dijkstra, J. Biol. Chem. 1999, 274, 14579–14586.
- 13P. Johansson, T. Unge, A. Cronin, M. Arand, T. Bergfors, T. A. Jones, S. L. Mowbray, J. Mol. Biol. 2005, 351, 1048–1056.
- 14M. Arand, B. M. Hallberg, J. Y. Zou, T. Bergfors, F. Oesch, M. J. van der Werf, J. A. M. de Bont, T. A. Jones, S. L. Mowbray, EMBO J. 2003, 22, 2583–2592.
- 15
- 15aR. M. Horton, H. D. Hunt, S. N. Ho, J. K. Pullen, L. R. Pease, Gene 1989, 77, 61–68;
- 15bE. M. Williams, J. N. Copp, D. F. Ackerley, Methods Mol. Biol. 2014, 1179, 83–101.
- 16H. H. Hogrefe, J. Cline, G. L. Youngblood, R. M. Allen, Biotechniques 2002, 33, 1158–1165.
- 17K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, D. E. Shaw, in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, Florida, 2006, p. 43.
- 18Schrödinger, Schrödinger, LLC, New York, NY, 2022.
- 19B. J. Frey, D. Dueck. Science 2007, 315, 972–976.
- 20PyMOL, The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
- 21R. Rink, M. Fennema, M. Smids, U. Dehmel, D. B. Janssen, J. Biol. Chem. 1997, 272, 14650–14657.
- 22C. Nusbaum, T. S. Mikkelsen, M. C. Zody, S. Asakawa, S. Taudien, M. Garber, C. D. Kodira, M. G. Schueler, A. Shimizu, C. A. Whittaker, J. L. Chang, C. A. Cuomo, K. Dewar, M. G. FitzGerald, X. P. Yang, N. R. Allen, S. Anderson, T. Asakawa, K. Blechschmidt, T. Bloom, M. L. Borowsky, J. Butler, A. Cook, B. Corum, K. DeArellano, D. DeCaprio, K. T. Dooley, L. Dorris, R. Engels, G. Glockner, N. Hafez, D. S. Hagopian, J. L. Hall, S. K. Ishikawa, D. B. Jaffe, A. Kamat, J. Kudoh, R. Lehmann, T. Lokitsang, P. Macdonald, J. E. Major, C. D. Matthews, E. Mauceli, U. Menzel, A. H. Mihalev, S. Minoshima, Y. Murayama, J. W. Naylor, R. Nicol, C. Nguyen, S. B. O′Leary, K. O′Neill, S. C. J. Parker, A. Polley, C. K. Raymond, K. Reichwald, J. Rodriguez, T. Sasaki, M. Schilhabel, R. Siddiqui, C. L. Smith, T. P. Sneddon, J. A. Talamas, P. Tenzin, K. Topham, V. Venkataraman, G. P. Wen, S. Yamazaki, S. K. Young, Q. D. Zeng, A. R. Zimmer, A. Rosenthal, B. W. Birren, M. Platzer, N. Shimizu, E. S. Lander, Nature 2006, 439, 331–335.
- 23
- 23aF. Barbirato, J. C. Verdoes, J. A. M. de Bont, M. J. van der Werf, FEBS Lett. 1998, 438, 293–296;
- 23bZ. T. Sun, R. Lonsdale, X. D. Kong, J. H. Xu, J. H. Zhou, M. T. Reetz, Angew. Chem., Int. Ed. 2015, 54, 12410–12415;
- 23cZ. T. Sun, L. Wu, M. Bocola, H. C. S. Chan, R. Lonsdale, X. D. Kong, S. G. Yuan, J. H. Zhou, M. T. Reetz, J. Am. Chem. Soc. 2018, 140, 310–318.