Electrochemically Assisted Growth of CsPbBr3-Based Solar Cells Without Selective Contacts
Corresponding Author
Dr. Daniel Ramírez
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorDr. Gonzalo Riveros
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorPatricia Díaz
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorJavier Verdugo
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorGerard Núñez
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorSusy Lizama
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorPamela Lazo
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorProf. Enrique A. Dalchiele
Instituto de Física, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, C.C. 30, 11000 Montevideo, Uruguay
Search for more papers by this authorDaniel L. Gau
Instituto de Física, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, C.C. 30, 11000 Montevideo, Uruguay
Search for more papers by this authorProf. Ricardo E. Marotti
Instituto de Física, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, C.C. 30, 11000 Montevideo, Uruguay
Search for more papers by this authorDr. Juan A. Anta
Departamento de Sistemas Físicos, Químicos y, Naturales Universidad Pablo de Olavide, 41013 Sevilla, Spain
Search for more papers by this authorDr. Lidia Contreras-Bernal
Departamento de Sistemas Físicos, Químicos y, Naturales Universidad Pablo de Olavide, 41013 Sevilla, Spain
Search for more papers by this authorAntonio Riquelme
Departamento de Sistemas Físicos, Químicos y, Naturales Universidad Pablo de Olavide, 41013 Sevilla, Spain
Search for more papers by this authorDr. Jesús Idigoras
Departamento de Sistemas Físicos, Químicos y, Naturales Universidad Pablo de Olavide, 41013 Sevilla, Spain
Search for more papers by this authorCorresponding Author
Dr. Daniel Ramírez
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorDr. Gonzalo Riveros
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorPatricia Díaz
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorJavier Verdugo
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorGerard Núñez
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorSusy Lizama
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorPamela Lazo
Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Search for more papers by this authorProf. Enrique A. Dalchiele
Instituto de Física, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, C.C. 30, 11000 Montevideo, Uruguay
Search for more papers by this authorDaniel L. Gau
Instituto de Física, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, C.C. 30, 11000 Montevideo, Uruguay
Search for more papers by this authorProf. Ricardo E. Marotti
Instituto de Física, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, C.C. 30, 11000 Montevideo, Uruguay
Search for more papers by this authorDr. Juan A. Anta
Departamento de Sistemas Físicos, Químicos y, Naturales Universidad Pablo de Olavide, 41013 Sevilla, Spain
Search for more papers by this authorDr. Lidia Contreras-Bernal
Departamento de Sistemas Físicos, Químicos y, Naturales Universidad Pablo de Olavide, 41013 Sevilla, Spain
Search for more papers by this authorAntonio Riquelme
Departamento de Sistemas Físicos, Químicos y, Naturales Universidad Pablo de Olavide, 41013 Sevilla, Spain
Search for more papers by this authorDr. Jesús Idigoras
Departamento de Sistemas Físicos, Químicos y, Naturales Universidad Pablo de Olavide, 41013 Sevilla, Spain
Search for more papers by this authorGraphical Abstract
Minimizing the lead: A simple and cost-effective CsPbBr3-based solar cell without ordinary selective contacts is reported. An electrochemical approach consisting of three successive steps: (1) electrodeposition of PbO2 directly on top of FTO substrates, (2) heterogeneous phase reaction with gaseous HBr and (3) spin-coating of methanolic CsBr solutions followed by annealing was used. This method is more adequate for large-scale environmentally friendly production as it reduces chemical waste, particularly toxic lead.
Abstract
In this work we report a simple and cost-effective CsPbBr3-based solar cell without ordinary selective contacts. To do so we follow an electrochemical approach consisting of three successive steps: (1) electrodeposition of PbO2 directly on top of FTO substrates, (2) heterogeneous phase reaction with gaseous HBr and (3) spin-coating of methanolic CsBr solutions followed by annealing. This method is more adequate for large-scale environmentally friendly production as it reduces chemical waste, particularly toxic lead. The resulting films were structurally and optically characterized showing good coverage of the FTO substrates, absence of defects such as pinholes and orthorhombic structure. Photovoltaic and impedance characterization was carried out by pressing a carbon coated metal spring onto the CsPbBr3 film until obtaining maximized open-circuit potential (Voc) and short-circuit photocurrent density (jsc) under simulated sunlight. The stabilized current at fixed voltage (SCFV) technique gave a maximum PCE value of 2.70 % close to devices with similar configuration. Impedance measurements demonstrated analogous behavior to that of state-of-art CsPbBr3 based solar cells, comprising a recombination arc at mid-high frequencies, geometrical capacitance and ideality factors closed to 2, typical of SRH recombination in the perovskite bulk.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
celc202000782-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Colella, M. Mazzeo, A. Rizzo, G. Gigli, A. Listorti, J. Phys. Chem. Lett. 2016, 7, 4322–4334.
- 2Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html.
- 3M. Grätzel, Nat. Mater. 2014, 13, 838–842.
- 4B. Saparov, D. B. Mitzi, Chem. Rev. 2016, 116, 4558–4596.
- 5J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 2016, 138, 15829–15832.
- 6X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, H. Chen, ACS Appl. Mater. Interfaces 2016, 8, 33649–33655.
- 7R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee, J. Phys. Chem. Lett. 2016, 7, 746–751.
- 8M. Kulbak, D. Cahen, G. Hodes, J. Phys. Chem. Lett. 2015, 6, 2452–2456.
- 9M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 2016, 7, 167–172.
- 10C.-X. Qian, Z.-Y. Deng, K. Yang, J. Feng, M.-Z. Wang, Z. Yang, S. Liu, H.-J. Feng, Appl. Phys. Lett. 2018, 112, 93901.
- 11J. Duan, Y. Zhao, B. He, Q. Tang, Angew. Chem. 2018, 130, 3849.
- 12Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Nano-Micro Lett. 2018, 10, 34.
- 13P. Luo, Y. Zhou, S. Zhou, Y. Lu, C. Xu, W. Xia, L. Sun, Chem. Eng. J. 2018, 343, 146–154.
- 14Y. Li, J. Duan, Y. Zhao, Q. Tang, Chem. Commun. 2018, 54, 8237–8240.
- 15J. Duan, Y. Zhao, B. He, Q. Tang, Small 2018, 14, 1704443.
- 16X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, S. F. Liu, ACS Appl. Mater. Interfaces 2018, 10, 7145–7154.
- 17J. B. Hoffman, G. Zaiats, I. Wappes, P. V. Kamat, Chem. Mater. 2017, 29, 9767–9774.
- 18L. Contreras-Bernal, S. Ramos-Terrón, A. Riquelme, P. Boix, J. Idígoras, I. Mora-Seró, J. A. Anta, J. Mater. Chem. A 2019, 7, 12191–12200.
- 19I. Poli, J. Baker, J. McGettrick, F. De Rossi, S. Eslava, T. Watson, P. J. Cameron, J. Mater. Chem. A 2018, 6, 18677–18686.
- 20C. Chen, Y. Wu, L. Liu, Y. Gao, X. Chen, W. Bi, X. Chen, D. Liu, Q. Dai, H. Song, Adv. Sci. 2019, 6, 1802046.
- 21J. Lei, F. Gao, H. Wang, J. Li, J. Jiang, X. Wu, R. Gao, Z. Yang, S. Liu, Sol. Energy Mater. Sol. Cells 2018, 187, 1–8.
- 22Y. Zhang, L. Luo, J. Hua, C. Wang, F. Huang, J. Zhong, Y. Peng, Z. Ku, Y. Cheng, Mater. Sci. Semicond. Process. 2019, 98, 39–43.
- 23H. Wang, Y. Wu, M. Ma, S. Dong, Q. Li, J. Du, H. Zhang, Q. Xu, ACS Appl. Energy Mater. 2019, 2, 2305–2312.
- 24G. Liao, Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He, Q. Tang, Dalton Trans. 2018, 47, 15283–15287.
- 25J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, Adv. Energy Mater. 2018, 8, 1802346.
- 26Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He, Q. Tang, Sol. RRL 2019, 3, 1800284.
- 27Y. Liu, B. He, J. Duan, Y. Zhao, Y. Ding, M. Tang, H. Chen, Q. Tang, J. Mater. Chem. A 2019, 7, 12635–12644.
- 28Y. Iso, T. Isobe, ECS J. Solid State Sci. Tech. 2018, 7, R3040–R3045.
- 29L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, Z. Zhang, H. Tan, Y. Yang, M. Wei, B. R. Sutherland, E. H. Sargent, J. You, Nat. Commun. 2017, 8, 15640.
- 30C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Young Chung, A. J. Freeman, B. W. Wessels, M. G. Kanatzidis, Cryst. Growth Des. 2013, 13, 2722–2727.
- 31Y. Xu, M. Yang, B. Chen, X. Wang, H. Chen, D. Kuang, C. Su, J. Am. Chem. Soc. 2017, 139, 5660–5663.
- 32H. Wu, X. Li, C. Tung, L. Wu, Adv. Mater. 2019, 31, 1900709.
- 33X. Zhu, Y. Lin, J. San Martin, Y. Sun, D. Zhu, Y. Yan, Nat. Commun. 2019, 10, 2843.
- 34L. Gao, W. Luo, Y. Yao, Z. Zou, Chem. Commun. 2018, 54, 11459–11462.
- 35Y. Li, Z. Shi, S. Li, L. Lei, H. Ji, D. Wu, T. Xu, Y. Tian, X. Li, J. Mater. Chem. C 2017, 5, 8355–8360.
- 36Y. Zhu, X. Tong, H. Song, Y. Wang, Z. Qiao, D. Qiu, J. Huang, Z. Lu, Dalton Trans. 2018, 47, 10057–10062.
- 37S. Schünemann, M. Van Gastel, H. Tüysüz, ChemSusChem 2018, 11, 2057–2061.
- 38Y. Galagan, J. Phys. Chem. Lett. 2018, 9, 4326–4335.
- 39H. Deligianni, S. Ahmed, L. T. Romankiw, Electrochem. Soc. Interface 2011, 20, 47–53.
- 40F. Tsin, A. Venerosy, J. Vidal, S. Collin, J. Clatot, L. Lombez, M. Paire, S. Borensztajn, C. Broussillou, P. P. Grand, S. Jaime, D. Lincot, J. Rousset, Sci. Rep. 2015, 5, 8961.
- 41J. C. Hill, J. A. Koza, J. A. Switzer, ACS Appl. Mater. Interfaces 2015, 7, 26012–26016.
- 42X.-P. Cui, K.-J. Jiang, J.-H. Huang, X.-Q. Zhou, M.-J. Su, S.-G. Li, Q.-Q. Zhang, L.-M. Yang, Y.-L. Song, Chem. Commun. 2015, 51, 1457–1460.
- 43J.-H. Huang, K.-J. Jiang, X.-P. Cui, Q.-Q. Zhang, M. Gao, M.-J. Su, L.-M. Yang, Y. Song, Sci. Rep. 2015, 5, 15889.
- 44I. Zhitomirsky, L. Gal-Or, A. Kohn, H. W. Hennicke, J. Mater. Sci. Lett. 1995, 14, 807–810.
- 45S. Sawatani, S. Ogawa, T. Yoshida, H. Minoura, Adv. Funct. Mater. 2005, 15, 297–302.
- 46J. A. Koza, J. C. Hill, A. C. Demster, J. A. Switzer, Chem. Mater. 2016, 28, 399–405.
- 47H. Chen, Z. Wei, X. Zheng, S. Yang, Nano Energy 2015, 15, 216–226.
- 48G. Popov, M. Mattinen, M. L. Kemell, M. Ritala, M. Leskelä, ACS Omega 2016, 1, 1296–1306.
- 49X. Li, D. Pletcher, F. C. Walsh, Chem. Soc. Rev. 2011, 40, 3879–3894.
- 50A. A. Vertegel, E. W. Bohannan, M. G. Shumsky, J. A. Switzer, J. Electrochem. Soc. 2001, 148, C253–C256.
- 51D. R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition), http:/www.hbcpnetbase.com, Taylor and Francis, Boca Raton, FL, 2007.
- 52X. Zhao, C. Li, Y. Wang, W. Xu, Int. J. Electrochem. Sci. 2018, 13, 3745–3756.
- 53A. Kostopoulou, M. Sygletou, K. Brintakis, A. Lappas, E. Stratakis, Nanoscale 2017, 9, 18202–18207.
- 54K. Chen, S. Shünemann, S. Song, H. Tüysüz, Chem. Soc. Rev. 2018, 47, 7045–7077.
- 55C. Tenailleau, S. Aharon, B. Cohen, L. Etgar, Nanoscale Adv. 2019, 1, 147–153.
- 56G. Murugadoss, R. Thangamuthu, Sol. Energy 2019, 179, 151–163.
- 57J. Yin, H. Yang, K. Song, A. M. El-Zohry, Y. Han, O. M. Bakr, J. L. Bredas, O. F. Mohammed, J. Phys. Chem. Lett. 2018, 9, 5490–5495.
- 58I. Dursun, M. De Bastiani, B. Turedi, B. Alamer, A. Shkurenko, J. Yin, A. M. El-Zohry, I. Gereige, A. AlSaggaf, O. F. Mohammed, M. Eddaoudi, O. M. Bakr, ChemSusChem 2017, 10, 3746–3749.
- 59M. I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N. Cho, O. F. Mohammed, O. M. Bakr, ACS Energy Lett. 2016, 1, 840–845.
- 60X. Chen, H. Lu, Y. Yang, M. C. Beard, J. Phys. Chem. Lett. 2018, 9, 2595–2603.
- 61M. C. Brennan, J. E. Herr, T. S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, M. Kuno, J. Am. Chem. Soc. 2017, 139, 12201–12208.
- 62W. Wu, W. Liu, Q. Wang, Q. Han, Q. Yang, J. Alloys Compd. 2019, 787, 165–172.
- 63J. Li, X. Yuan, P. Jing, J. Li, M. Wei, J. Hua, J. Zhao, L. Tian, RSC Adv. 2016, 6, 78311–78316.
- 64R. B. Dunbar, B. C. Duck, T. Moriarty, K. F. Anderson, N. W. Duffy, C. J. Fell, J. Kim, A. Ho-Baillie, D. Vak, T. Duong, Y. Wu, K. Weber, A. Pascoe, Y. Cheng, Q. Lin, P. L. Burn, R. Bhattacharjee, H. Wang, G. J. Wilson, J. Mater. Chem. A 2017, 5, 22542–22558.