Titanocene-Catalyzed Cascade Cyclization of Epoxypolyprenes: Straightforward Synthesis of Terpenoids by Free-Radical Chemistry
José Justicia
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorAntonio Rosales
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorElena Buñuel Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorJuan L. Oller-López
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorMónica Valdivia
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorAli Haïdour Dr.
Scientific Instrument Center, Granada, 18071, Spain
Search for more papers by this authorJ. Enrique Oltra Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorAlejandro F. Barrero Prof. Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorDiego J. Cárdenas Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorJuan M. Cuerva Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorJosé Justicia
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorAntonio Rosales
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorElena Buñuel Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorJuan L. Oller-López
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorMónica Valdivia
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorAli Haïdour Dr.
Scientific Instrument Center, Granada, 18071, Spain
Search for more papers by this authorJ. Enrique Oltra Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorAlejandro F. Barrero Prof. Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorDiego J. Cárdenas Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorJuan M. Cuerva Dr.
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain, Fax: (+34) 958-248-437
Search for more papers by this authorGraphical Abstract
The total synthesis of a wide range of complex terpenoid skeletons, including monocyclic, bicyclic, and tricyclic natural products, is facilitated by employing a novel reaction cascade based on the combination of biomimetic strategies with titanocene catalysis. For example, the titanocene-catalyzed radical cyclization of 2,3-oxidosqualene mainly gave malabaricatrienes (see scheme). Mechanistically the reaction presumably occurs via discrete carbon-centered radicals.
Abstract
The titanocene-catalyzed cascade cyclization of epoxypolyenes, which are easily prepared from commercially available polyprenoids, has proven to be a useful procedure for the synthesis of C10, C15, C20, and C30 terpenoids, including monocyclic, bicyclic, and tricyclic natural products. Both theoretical and experimental evidence suggests that this cyclization takes place in a nonconcerted fashion via discrete carbon-centered radicals. Nevertheless, the termination step of the process seems to be subjected to a kind of water-dependent control, which is unusual in free-radical chemistry. The catalytic cycle is based on the use of the novel combination Me3SiCl/2,4,6-collidine to regenerate the titanocene catalyst. In practice this procedure has several advantages: it takes place at room temperature under mild conditions compatible with different functional groups, uses inexpensive reagents, and its end step can easily be controlled to give exocyclic double bonds by simply excluding water from the medium.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2111/2004/f5647_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. M. Trost, Science 1991, 254, 1471–1477;
- 1bB. M. Trost, Angew. Chem. 1995, 107, 285–307;
10.1002/ange.19951070304 Google ScholarAngew. Chem. Int. Ed. Engl. 1995, 34, 259–281;
- 1cA. Fürstner, Synlett 1999, 1523–1533;
- 1dA. Fürstner, A. Leitner, Angew. Chem. 2003, 115, 320–323;
10.1002/ange.200390071 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 308–311.
- 2
- 2aI. Abe, M. Rohmer, G. D. Prestwich, Chem. Rev. 1993, 93, 2189–2206;
- 2bK. U. Wendt, G. E. Schulz, E. J. Corey, D. R. Liu, Angew. Chem. 2000, 112, 2930–2952;
10.1002/1521-3757(20000818)112:16<2930::AID-ANGE2930>3.0.CO;2-S Google ScholarAngew. Chem. Int. Ed. 2000, 39, 2812–2833.10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-# CASPubMedWeb of Science®Google Scholar
- 3
- 3aE. J. Corey, S. C. Virgil, J. Am. Chem. Soc. 1991, 113, 4025–4026;
- 3bE. J. Corey, S. C. Virgil, S. Sarshar, J. Am. Chem. Soc. 1991, 113, 8171–8172;
- 3cE. J. Corey, S. C. Virgil, H. Cheng, C. H. Baker, S. P. T. Matsuda, V. Singh, S. Sarshar, J. Am. Chem. Soc. 1995, 117, 11 819–11 820;
- 3dE. J. Corey, H. Cheng, Tetrahedron Lett. 1996, 37, 2709–2712;
- 3eC. Jenson, W. L. Jorgensen, J. Am. Chem. Soc. 1997, 119, 10 846–10 854;
- 3fB. A. Hess Jr., J. Am Chem. Soc. 2002, 124, 10 286–10 287;
- 3gB. A. Hess Jr., Org. Lett. 2003, 5, 165–167;
- 3hD. Gao, Y.-K. Pan, J. Am. Chem. Soc. 1998, 120, 4045–4046
- 4For a seminal work, see:
- 4aD. J. Goldsmith, J. Am. Chem. Soc. 1962, 84, 3913–3918. For some reviews, see:
- 4bE. E. van Tamelen, Acc. Chem. Res. 1975, 8, 152–158;
- 4cS. K. Taylor, Org. Prep. Proced. Int. 1992, 24, 247–284;
- 4dS. T. Dennison, D. C. Harrowven, J. Chem. Educ. 1996, 73, 697–701;
- 4eC. M. Marson, Tetrahedron 2000, 56, 8779–8793. For recent selected examples, see:
- 4fA. X. Huang, Z. Xiong, E. J. Corey, J. Am. Chem. Soc. 1999, 121, 9999–10 003;
- 4gJ. Zhang, E. J. Corey, Org. Lett. 2001, 3, 3215–3216;
- 4hM. Yuan, J. V. Schreiber, E. J. Corey, J. Am. Chem. Soc. 2002, 124, 11 290–11 291.
- 5
- 5aR. Breslow, E. Barrett, E. Mohacsi, Tetrahedron Lett. 1962, 3, 1207–1211;
10.1016/S0040-4039(00)70586-7 Google Scholar
- 5bR. Breslow, S. S. Olin, J. T. Groves, Tetrahedron Lett. 1968, 1837–1840;
- 5cJ. Y. Lallemand, M. Julia, D. Mansuy, Tetrahedron Lett. 1973, 14, 4461–4464.
10.1016/S0040-4039(01)87249-X Google Scholar
- 6For a recent review on the synthesis of polycyclic compounds by means of radical cascade reactions see:
- 6aA. L. Dhimane, L. Fensterbank, M. Malacria in Radicals in Organic Synthesis, Vol. 2 (Eds.: ), Wiley-VCH, Weinheim, Germany, 2001, pp. 350–382. For selected references see:
10.1002/9783527618293.ch43 Google Scholar
- 6bS. Handa, G. Pattenden, J. Chem. Soc. Perkin Trans. 1 1999, 843–844.;
- 6cU. Hoffmann, Y. Gao, B. Pandey, S. Klinge, K.-D. Warzecha, C. Krüger, H. D. Roth, M. Demuth, J. Am. Chem. Soc. 1993, 115, 10 358–10 359;
- 6dB. B. Snyder, J. Y. Kiselgoc, B. M. Foxman, J. Org. Chem. 1998, 63, 7945–7952;
- 6eP. A. Zoretic, H. Fang, A. A. Ribeiro J. Org. Chem. 1998, 63, 4779–4785.
- 7
- 7aW. A. Nugent, T. V. RajanBabu, J. Am. Chem. Soc. 1988, 110, 8561–8562;
- 7bT. V. RajanBabu, W. A. Nugent, J. Am. Chem. Soc. 1994, 116, 986–997;
- 7cA. Gansäuer, M. Pierobon, H. Bluhm, Angew. Chem. 1998, 110, 107–109;
10.1002/(SICI)1521-3757(19980116)110:1/2<107::AID-ANGE107>3.0.CO;2-3 Google ScholarAngew. Chem. Int. Ed. 1998, 37, 101–103;10.1002/(SICI)1521-3773(19980202)37:1/2<101::AID-ANIE101>3.0.CO;2-W CASWeb of Science®Google Scholar
- 7dA. Gansäuer, H. Bluhm, M. Pierobon, J. Am. Chem. Soc. 1998, 120, 12 849–12 859;
- 7eA. Gansäuer, M. Pierobon, H. Bluhm, Synthesis 2001, 2500–2520;
- 7fA. Gansäuer, B. Rinker, Tetrahedron 2002, 58, 7017–7026;
- 7gA. Gansäuer, H. Bluhm, B. Rinker, S. Narayan, M. Schick, T. Lauterbach, M. Pierobon, Chem. Eur. J. 2003, 9, 531–542.
- 8A. F. Barrero; J. M. Cuerva, M. M. Herrador, M. V. Valdivia, J. Org. Chem. 2001, 66, 4074–4078.
- 9Titanocene(III) is generated in situ as the active form [Cp2TiIIICl] by stirring commercially available [Cp2TiIVCl2] and Mn dust; see:
- 9aD. Sekutowski, R. Jungst, G. D. Stucky, Inorg. Chem. 1978, 17, 1848–1855;
- 9bR. J. Enemaerke, G. H. Hjollund, K. Daasbjerg, T. Skrydstrup, C. R. Acad. Sci. Ser II 2001, 4, 435–438.
- 10
- 10aA. F. Barrero, J. E. Oltra, J. M. Cuerva, A. Rosales, J. Org. Chem. 2002, 67, 2566–2571;
- 10bA. F. Barrero, A. Rosales, J. M. Cuerva, J. E. Oltra, Org. Lett. 2003, 5, 1935–1938.
- 11GC-MS analysis indicated a 77 % deuterium incorporation.
- 12Despite of the free-radical nature of TiIII mediated epoxide openings, the water-dependent control of termination steps seems to be a general feature when tertiary radicals are involved in this process; see ref. [10].
- 13D. P. Curran, N. A. Porter, B. Giese, Stereochemistry of Radical Reactions, VCH, Weinheim, 1995.
10.1002/9783527615230 Google Scholar
- 14In initial experiments using an excess of titanocene (ref. [8]) dilutions levels to the order of 10−3 M were needed to avoid increased proportions of byproducts such as 4 and 7, derived from the premature trapping of intermediate radicals such as 2 and 5.
- 15The use of chlorosilanes alone, originally described by Fürstner and Hupperts to regenerate titanium catalysts in McMurry-type reactions, is not suitable when epoxypolyenes are involved in the reaction, because, under treatment with acidic reagents, these substrates undergo carbocationic cyclization instead of the desired radical process. For more detailed discussions about this subject see refs. [7c] and [10]. For the original reports on the use of chlorosilanes to regenerate titanium and chromium catalysts see:
- 15aA. Fürstner, A. Hupperts, J. Am. Chem. Soc. 1995, 117, 4468–4475;
- 15bA. Fürstner, N. Shi, J. Am. Chem. Soc. 1996, 118, 12 349–12 357. For a review on this item see:
- 15cA. Fürstner, Chem. Eur. J. 1998, 4, 567–570.
- 16E. E. van Tamelen, A. Storni, E. J. Hessler, M. Schwartz, J. Am. Chem. Soc. 1963, 85, 3295–3297.
- 17In contrast with carbocationic cyclizations, in which mainly endocyclic double bonds are formed,[10a, 30] both stoichiometric and catalytic versions of TiIII-based cyclization show a high regioselectivity towards exocyclic alkenes. This preference might be related to the free rotation of methyl groups (C-12 in 9), which would allow a syn disposition between hydrogen and titanium atoms and thus facilitate the elimination of [Cp2Ti(Cl)H].
- 18J. A. Marco, J. F. Sanz-Cervera, M. D. Morante, V. Garcia-Lliso, J. Vallés-Xirau, J. Jakupovic, Phytochemistry 1996, 41, 837–844.
- 19E. Marcantoni, F. Nobili, G. Bartoli, M. Bosco, L. Sambri, J. Org. Chem. 1997, 62, 4183–4184.
- 20J. P. Uttaro, G. Audran, E. Palombo, H. Monti, J. Org. Chem. 2003, 68, 5407–5410.
- 21A. F. Barrero, J. M. Cuerva, E. J. Álvarez-Manzaneda, J. E. Oltra, R. Chahboun, Tetrahedron Lett. 2002, 43, 2793–2796.
- 22
- 22aJ. D. Connolly, R. A. Hill, Dictionary of Terpenoids, Vol. 1, Chapman and Hall, London, 1991, pp. 453–462;
10.1007/978-1-4899-4513-6 Google Scholar
- 22bB. M. Fraga, Nat. Prod. Rep. 2002, 19, 650–672 and previous issues in this series.
- 23W. F. Fleck, B. Schlegel, P. Hoffmann, M. Ritzau, S. Heinze, U. Grafe, J. Nat. Prod. 1996, 59, 780–781.
- 24K. Munesada, H. L. Siddiqui, T. Suga, Phytochemistry 1992, 31, 1533–1536.
- 25Farnesylacetone was bought from Fluka in the form of a mixture of four stereoisomers containing 31 % of the all-trans isomer (GC-MS analysis with an authentic sample as standard). This mixture was used as received because it is easier to isolate cyclic product 28 than the stereoisomers of the starting material. Nevertheless, as it is known that cis isomers do not undergo cyclization under our experimental conditions (see the case of epoxyneryl acetate in ref. [8]), the yields are based on the all-trans isomer contained in the starting mixture.
- 26H. Monti, N. Tiliacos, R. Faure, Phytochemistry 1996, 42, 1653–1656.
- 27H. Monti, N. Tiliacos, R. Faure, Phytochemistry 1999, 51, 1013–1015.
- 28
- 28aS. J. White, R. S. Jacobs, Mol. Pharmacol. 1983, 24, 500–508;
- 28bE. T. O′Brien, D. J. Asai, R. S. Jacobs, L. Wilson, Mol. Pharmacol. 1989, 35, 635–642.
- 29
- 29aX. Xing, M. Demuth, Synlett 1999, 987–990;
- 29bX. Xing, M. Demuth, Eur. J. Org. Chem. 2001, 537–544.
- 30E. E. van Tamelen, R. C. Nadeau, J. Am. Chem. Soc. 1967, 89, 176–177.
- 31
- 31aE. E. van Tamelen, J. Willet, M. Schwartz, R. Nadeau, J. Am. Chem. Soc. 1966, 88, 5937–5938;
- 31bK. B. Sharpless, E. E. van Tamelen, J. Am. Chem. Soc. 1969, 91, 1848–1849.
- 32Both 3β-hydroxymalabarica-14(26), 17E, 21-triene (39) and the corresponding acetate are natural metabolites from plants. NMR data of synthetic 39 and its acetyl derivative were in accordance with those of the natural products, confirming the structures proposed on the basis of chemical degradation and spectroscopic techniques; see:
- 32aJ. Jakupovic, F. Eid, F. Bohlmann, S. El-Dahmy, Phytochemistry 1987, 26, 1536–1538;
- 32bF. J. Marner, A. Freyer, J. Lex, Phytochemistry 1991, 30, 3709–3712.
- 33A further 5-endo cyclization of radical 45 is disfavored by Baldwin's rules; see:
- 33aJ. E. Baldwin, J. Chem. Soc. Chem. Commun. 1976, 734–736;
- 33bJ. E. Baldwin, J. Cutting, W. Dupont, L. Kruse, L. Silberman, R. C. Thomas, J. Chem. Soc. Chem. Commun. 1976, 736–738.
- 34A. Behrens, P. Schaeffer, S. Bernasconi, P. Albrecht, Org. Geochem. 1999, 30, 379–383;
- 34bS. Schouten, M. J. L. Hoefs, J. S. Sinninghe Damste, Org. Geochem. 2000, 31, 509–521;
- 34cJ. P. Werne, D. J. Hollander, A. Behrens, P. Schaeffer, P. Albrecht, J. S. Sinninghe Damste, Geochim. Cosmochim. Acta 2000, 64, 1741–1751.
- 35A. F. Barrero, E. J. Alvarez-Manzaneda, P. L. Palomino, Tetrahedron 1994, 50, 13 239–13 250.
- 36A. F. Barrero, E. J. Alvarez-Manzaneda, R. Alvarez-Manzaneda, Tetrahedron Lett. 1989, 30, 3351–3352.
- 37See Supporting Information.
- 38J. B. Arterburn, M. C. Perry, Org. Lett. 1999, 1, 769–771.
- 39A. S. Gopalan, R. Prieto, B. Mueller, D. Peters, Tetrahedron Lett. 1992, 33, 1679–1682.
- 40Gaussian 98 (Revision A.7), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
- 41
- 41aA. D. Becke, Phys. Rev. A 1988, 38, 3098–3100;
- 41bC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- 42A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.