Mechanistic Investigations into the Enantioselective Conia-Ene Reaction Catalyzed by Cinchona-Derived Amino Urea Pre-Catalysts and CuI
Dr. Filippo Sladojevich
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)
Search for more papers by this authorÁngel L. Fuentes de Arriba
Organic Chemistry Department, University of Salamanca, Plaza de los Caídos 1-5, Salamanca, 37008 (Spain.)
Search for more papers by this authorDr. Irene Ortín
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)
Search for more papers by this authorDr. Ting Yang
GlaxoSmithKline (China) R&D, Building No. 3, 898 Halei Road Zhangjiang Hi-tech Park, Pudong Shanghai 201203 (China.)
Search for more papers by this authorDr. Alessandro Ferrali
Enantia S.L. C/Baldiri Reixac, 1008028 Barcelona (Spain.)
Search for more papers by this authorCorresponding Author
Dr. Robert S. Paton
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)Search for more papers by this authorCorresponding Author
Prof. Darren J. Dixon
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)Search for more papers by this authorDr. Filippo Sladojevich
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)
Search for more papers by this authorÁngel L. Fuentes de Arriba
Organic Chemistry Department, University of Salamanca, Plaza de los Caídos 1-5, Salamanca, 37008 (Spain.)
Search for more papers by this authorDr. Irene Ortín
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)
Search for more papers by this authorDr. Ting Yang
GlaxoSmithKline (China) R&D, Building No. 3, 898 Halei Road Zhangjiang Hi-tech Park, Pudong Shanghai 201203 (China.)
Search for more papers by this authorDr. Alessandro Ferrali
Enantia S.L. C/Baldiri Reixac, 1008028 Barcelona (Spain.)
Search for more papers by this authorCorresponding Author
Dr. Robert S. Paton
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)Search for more papers by this authorCorresponding Author
Prof. Darren J. Dixon
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA (U.K.)Search for more papers by this authorGraphical Abstract
Cooperation is key! A detailed mechanistic study on the enantioselective Conia-ene reaction catalyzed by cinchona-derived amino urea pre-catalysts and CuI is reported (see scheme; Tf=trifluoromethanesulfonate). A combination of experimental considerations and quantum mechanical calculations has been carried out to prove the cooperative nature of the system and propose a plausible catalytic cycle.
Abstract
The enantioselective Conia-ene cyclization of alkyne-tethered β-ketoesters is efficiently catalyzed by the combination of cinchona-derived amino-urea pre-catalysts and copper(I) salts. The reaction scope is broad and a series of substrates can be efficiently cyclized with high yields and enantioselectivities. Herein, we present a detailed mechanistic study based on experimental considerations and quantum mechanical calculations. Several variables, such as the nature of the organic pre-catalyst and the metal-ion source, have been thoroughly investigated. Kinetic studies, as well as kinetic isotope effects and deuterium labeling experiments have been used to gain further insights into the mechanism and prove the cooperative nature of the catalytic system. Our studies suggest that the rate-limiting step for the reaction involves the β-ketoester deprotonation and that the active species responsible for the enantiodeterming step is monomeric in amino-urea pre-catalyst. Computational studies provide a quantitative understanding of the observed stereoinduction and identify hydrogen bonding from the urea group as a crucial factor in determining the observed enantioselectivity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem_201200832_sm_miscellaneous_information.pdf2.3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713–5743;
- 1bM. Shibasaki, M. Kanai, S. Matsunaga, N. Kumagai, Acc. Chem. Res. 2009, 42, 1117–1127;
- 1cS. Matsunaga, M. Shibasaki, Bull. Chem. Soc., Jpn. 2008, 81, 60–75;
- 1dR. M. Haak, S. J. Wezenberg, A. W. Kleij, Chem. Commun. 2010, 46, 2713–2723;
- 1eS. J. Connon, Chem. Commun. 2008, 2499–2510;
- 1fE. N. Jacobsen, Acc. Chem. Res. 2000, 33, 421–431;
- 1gS. Saito, H. Yamamoto, Acc. Chem. Res. 2004, 37, 570–579;
- 1hA. Lattanzi, Chem. Commun. 2009, 1452–1463;
- 1iF. Giacalone, M. Gruttadauria, P. Agrigento, R. Noto, Chem. Soc. Rev. 2012, 41, 2406–2447;
- 1jA. E. Allen, D. W. C. MacMillan, Chem. Sci. 2012, 3, 633–658.
- 2
- 2aL. Stegbauer, F. Sladojevich, D. J. Dixon, Chem. Sci. 2012, 3, 942–958;
- 2bP. de Armas, D. Tejedor, F. García-Tellado, Angew. Chem. 2010, 122, 1029–1032;
10.1002/ange.200906018 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 1013–1016;
- 2cJ. R. Gareth, Tetrahedron 2001, 57, 1865–1882;
- 2dY. J. Park, J.-W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222–234;
- 2eM. Rueping, R. M. Koenigs, I. Atodiresei, Chem. Eur. J. 2010, 16, 9350–9365;
- 2fC. Zhong, X. Shi, Eur. J. Org. Chem. 2010, 2999–3025;
- 2gD. T. Cohen, K. A. Scheidt, Chem. Sci. 2012, 3, 53–57;
- 2hC. Grondal, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167–178;
- 2iC. C. J. Loh, D. Enders, Chem. Eur. J. 2012, 18, 10212–10225;
- 2jZ. Du, Z. Shao, Chem. Soc. Rev. 2013, 42, 1337–1378;
- 2kW. Tang, S. Johnston, J. A. Iggo, N. G. Berry, M. Phelan, L. Lian, J. Bacsa, J. Xiao, Angew. Chem. 2013, 125, 1712–1716;
10.1002/ange.201208774 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 1668–1672.
- 3J. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481–4483.
- 4
- 4aT. Yang, A. Ferrali, F. Sladojevich, L. Campbell, D. J. Dixon, J. Am. Chem. Soc. 2009, 131, 9140–9141;
- 4bB. K. Corkey, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 17168–17169;
- 4cA. Matsuzawa, T. Mashiko, N. Kumagai, M. Shibasaki, Angew. Chem. 2011, 123, 7758–7761;
10.1002/ange.201102114 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 7616–7619.
- 5For selected racemic examples of cyclization of active methylene compounds into unactivated alkynes, see:
- 5aJ. M. Conia, P. Le Perchec, Synthesis 1975, 1–19;
- 5bJ. J. Kennedy-Smith, S. T. Staben, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 4526–4527;
- 5cQ. Gao, B.-F. Zheng, J.-H. Li, D. Yang, Org. Lett. 2005, 7, 2185–2188;
- 5dD. Bouyssi, N. Monteiro, G. Balme, Tetrahedron Lett. 1999, 40, 1297–1300;
- 5eW. Hess, J. Burton, Adv. Synth. Catal. 2011, 353, 2966–2970;
- 5fY. Liu, R.-J. Song, J.-H. Li, Synthesis 2010, 21, 3663–3669;
- 5gS. Montel, D. Bouyssi, G. Balme, Adv. Synth. Catal. 2010, 352, 2315–2320;
- 5hC.-L. Deng, R.-J. Song, Y.-L. Liu, J.-H. Li, Adv. Synth. Catal. 2009, 351, 3096–3100;
- 5iW. Li, X.-Z. Liu, X.-F. Zhou, C.-S. Lee, Org. Lett. 2010, 12, 548–551;
- 5jS. Hatakeyama, Pure Appl. Chem. 2009, 81, 217–226;
- 5kY. Itoh, H. Tsuji, K.-I. Yamagata, K. Endo, I. Tanaka, M. Nakamura, E. Nakamura, J. Am. Chem. Soc. 2008, 130, 17161–17167;
- 5lC.-L. Deng, T. Zou, Z.-Q. Wang, R.-J. Song, J.-H. Li, J. Org. Chem. 2009, 74, 412–414;
- 5mK. Takahashi, M. Midori, K. Kawano, J. Ishihara, S. Hatakeyama, Angew. Chem. 2008, 120, 6340–6342;
10.1002/ange.200801967 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 6244–6246;
- 5nC.-L. Deng, R.-J. Song, S.-M. Guo, Z.-Q. Wang, J.-H. Li, Org. Lett. 2007, 9, 5111–5114;
- 5oJ.-H. Pan, M. Yang, Q. Gao, N.-Y. Zhu, D. Yang, Synthesis 2007, 16, 2539–2544;
- 5pJ. S. Fisk, J. J. Tepe, J. Am. Chem. Soc. 2007, 129, 3058–3059;
- 5qG. Eglinton, M. C. Whiting, J. Chem. Soc. 1953, 3052–3059.
- 6See the Supporting Information for details.
- 7For selected examples of the DMSO effect in transition-metal catalysis, see:
- 7aK. K. Spektor, G. L. Starova, Y. M. Skripkin, L. V. Stepakova, Russ. J. Gen. Chem. 2011, 81, 1772–1777; <lit b> M. S. Chen, M. C. White, J. Am. Chem. Soc. 2004, 126, 1346–1347.
- 8For example, DMSO titration experiments are used to estimate the strength of hydrogen-bonding in solution:
- 8aT. P. Pitner, D. W. Urry, J. Am. Chem. Soc. 1972, 94, 1399–1400;
- 8bM. Iqbal, P. Balaram, J. Am. Chem. Soc. 1981, 103, 5548–5552;
- 8cP. A. Raj, P. Balaram, Biopolymers 1985, 24, 1131–1146.
- 9The reaction was quenched and analyzed after 3 h (25 % conversion, E/Z 94:6) to minimize the extent of CuI-promoted H/D exchange processes in 4 prior to cyclization.
- 10
- 10aD. A. Singleton, A. A. Thomas, J. Am. Chem. Soc. 1995, 117, 9357–9358;
- 10bK.-H. Kwon, D. W. Lee, C. S. Yi, Organometallics 2010, 29, 5748–5750;
- 10cY. Wu, R. P. Singh, L. Deng, J. Am. Chem. Soc. 2011, 133, 12458–12461.
- 11Reported BEMP PKbH+(MeCN) is 27.6 according to: R. Schwesinger, H. Schlemper, Angew. Chem. 1987, 99, 1212; Angew. Chem. Int. Ed. Engl. 1987, 26, 1167 and quinuclidine PKbH+(H2O) is 11.4 according to: E. A. Castro, M. Aliaga, P. Campodónico, J. G. Santos, J. Org. Chem. 2002, 67, 8911; no PKbH+ measurement for the two compounds in the same solvent were found by the authors. As a comparison the PKbH+(MeCN) values for some representative nitrogen bases are as following: NEt3 (18.82), N-methyl-piperidine (18.25), sparteine (21.66), DBU (24.34), TMG (23.3). All values according to: E. I. Rõõm, A. Kütt, I. Kaljurand, I. Koppel, I. Leito, I. A. Koppel, M. Mishima, K. Goto, Y. Miyahara, Chem. Eur. J. 2007, 13, 7631–7643.
- 12V. Chandrasekhar, P. Thilagar, B. Murugesa Pandian, Coord. Chem. Rev. 2007, 251, 1045–1074.
- 13C. Girard, H. B. Kagan, Angew. Chem. 1998, 110, 3088–3127;
10.1002/(SICI)1521-3757(19981102)110:21<3088::AID-ANGE3088>3.0.CO;2-A Google ScholarAngew. Chem. Int. Ed. 1998, 37, 2922–2959.10.1002/(SICI)1521-3773(19981116)37:21<2922::AID-ANIE2922>3.0.CO;2-1 CASPubMedWeb of Science®Google Scholar
- 14
- 14aT. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119–125;
- 14bA. Berkessel, F. Cleemann, S. Mukherjee, T. N. Mueller, J. Lex, Angew. Chem. 2005, 117, 817–821;
10.1002/ange.200461442 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 807–811.
- 15
- 15aN. Iwasawa, Y. Hayashi, H. Sakurai, K. Narasaka, Chem. Lett. 1989, 18, 1581–1584;
- 15bC. Bolm, G. Schlingloff, K. Harms, Chem. Ber. 1992, 125, 1191–1203.
- 16Gaussian 09, Revision A.02, M. J. Frisch et al., Gaussian, Inc. Wallingford, CT, 2009.
- 17Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- 18
- 18aA. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652;
- 18bC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789;
- 18cS. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211;
- 18dP. J. Stephens, F. J. Deulin, C. F. Chabalowski, N. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- 19R. S. Paton, J. M. Goodman, J. Chem. Inf. Model. 2009, 49, 944–955.
- 20R. R. Knowles, E. N. Jacobsen, Proc. Natl. Acad. Sci. USA 2010, 107, 20678–20685.
- 21
- 21aG. O. Jones, P. Liu, K. N. Houk, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 6205–6213;
- 21bH.-Z. Yu, Y.-Y. Jiang, Y. Fu, L. Liu, J. Am. Chem. Soc. 2010, 132, 18078–18091.
- 22P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299–310.
- 23
- 23aD. Feller, J. Comput. Chem. 1996, 17, 1571–1586;
- 23bK. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045–1052.
- 24S. E. Wheeler, K. N. Houk, J. Chem. Theory Comput. 2010, 6, 395–404.
- 25Y. Takano, K. N. Houk, J. Chem. Theory. Comput. 2005, 1, 70–77.
- 26E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1.
- 27K. A. Wiberg, Tetrahedron 1968, 24, 1083–1096.