Fluoropolymers: The Right Material for the Right Applications
Corresponding Author
Dr. Bruno Ameduri
Ingénierie et Architectures Macromoléculaires, Institut Charles Gerhardt, Ecole Nationale Supérieure de Chimie de Montpellier (UMR5253-CNRS), UM, 240 rue Emile Jeanbrau, 34296 Montpellier Cedex 5, France
Search for more papers by this authorCorresponding Author
Dr. Bruno Ameduri
Ingénierie et Architectures Macromoléculaires, Institut Charles Gerhardt, Ecole Nationale Supérieure de Chimie de Montpellier (UMR5253-CNRS), UM, 240 rue Emile Jeanbrau, 34296 Montpellier Cedex 5, France
Search for more papers by this authorGraphical Abstract
Finding places for fluorine: This review provides several recent innovative achievements from fluoropolymers: aerospace materials, thermoplastic elastomers, components for energy, coatings, optically and transparent films. An overview of the synthesis, properties, and applications of fluoropolymers is presented, firstly summarizing conventional strategies as well as RDRP (especially ITP, RAFT and CMRP) of fluorinated alkenes and secondly their design and applications as macromolecular materials.
Abstract
An overview on the synthesis, properties, and applications of fluoropolymers (PFs) is presented. First, a non-exhaustive summary on the homopolymers from conventional radical polymerization of fluoromonomers is proposed. FPs are interesting materials thanks to their outstanding properties such as thermal, oxidative and chemical resistances, low dissipation factor, refractive index, permittivity, and water absorptivity, as well as excellent durability and weatherability. Various strategies of synthesis are proposed, especially on recent studies on radical (co)polymerization of fluoroalkenes, just like their properties and applications ranging from coatings and energy-related materials (e.g. fuel cell membranes, components for lithium ion batteries, electroactive devices, and photovoltaics) to original fluorinated elastomers, surfactants, thermoplastic elastomers, thermostables, and optical devices.
Conflict of interest
The author declare no conflict of interest.
References
- 1 Modern Fluoropolymers (Ed.: ), Wiley Interscience, New York, 1997, 435–485.
- 2 Fluoropolymers: Synthesis and Applications (Eds.: ), Plenum, New York, 1999.
- 3
- 3a Fluoroplastics, Plastic Design Library Series (Ed.: ), Norwich, New York, 2003;
- 3b Fluoroplastics Volume 2: Melt Processible Fluoropolymers The Definitive User's Guide and Databook (Ed.: ), Plastics Design Library, Norwich, New York, 2003.
- 4 Well Architectured Fluoropolymers: Synthesis and Applications (Eds.: ), Elsevier, Amsterdam, 2004.
- 5 Fluoroelastomer Handbook: The Definitive User's Guide and Data Book (Ed.: ), Norwich, William Andrew, 2006.
- 6 Handbook of Fluoropolymer Science and Technology (Eds.: ), Wiley, New York, 2014.
- 7J. Gardiner, Aust. J. Chem. 2015, 68, 13–22.
- 8 Fluoroelastomers Handbook: The Definitive User's Guide (Ed.: ), 2nd ed., William Andrew, Oxford, 2016.
- 9 Fluorinated Polymers: Volume 2: Applications (Polymer Chemistry Series) (Eds.: ), The Royal Society of Chemistry, Cambridge, 2017.
- 10S. V. Sokolov, I. G. Kolokol'tseva, Polym. Sci. Ser. B 1996, 38, 225–231 (translated from Vysokomol. Soed. 1996, 38, 400–406).
- 11
- 11aB. Ameduri, B. Boutevin, G. Kostov, Prog. Polym. Sci. 2001, 26, 105–187;
- 11bB. Ameduri, B. Boutevin, J. Fluorine Chem. 2005, 126, 221–234.
- 12Y. Wang, Y. Bai, RSC Adv. 2016, 6, 53730–53748.
- 13Z. Cui, E. Drioli, Y. M. Lee, Progr. Polym. Sci. 2014, 39, 164–198.
- 14Y. Okamoto, F. Mikes, K. Koike, Y. Koike, Amorphous perfluoropolymers, in ref. [6]; chapter 16, pp. 377–391.
- 15Global Fluoropolymers Market-Products, Technologies & Applications; ReportLinker: Lyon, France, 2016 (https://www.marketsandmarkets.com/Market-Reports/fluor-polymer-market-497.html?gclid=CjwKCAjwhLHaBRAGEiwAHCgG3pF5a2VSZX154xSiTO7-cWuN6bGhnae4LIzNsXvkH5un4akl1BPaTRoCzI4QAvD_BwE, last accessed in May 2018.
- 16R. Dams, K. Hintzer in Ref. [9], Industrial Aspects of Fluorinated Oligomers and Polymers, in Fluorinated Polymers: Vol. 2: Applications, RSC, Oxford, Chapter 1, 2016; pp. 1–31.
- 17J. T. Goldbach, R. A. Sanayei, W. He, J. Henry, W. Kosar, A. Lefebvre, G. O'Brien, D. Vaessen, K. Wood, S. Zerafati, in Ref. [9], Commercial Synthesis and Applications of PVDF, chapter 6, pp. 127–157, 2017.
- 18D. A. Hercules, C. A. Parrish, J. S. Thrasher, Research and Non-major Commercial Co- and Terpolymers of Tetrafluoroethylene, in Fluorinated Polymers: Volume 2: Applications (Polymer Chemistry Series) (Eds.: B. Ameduri, H. Sawada), RSC, Cambridge, 2016; Chapter 9; pp. 206–264.
- 19F. Boschet, B. Améduri, Chem. Rev. 2014, 114, 927–980.
- 20
- 20aD. A. Seiler, PVDF in the Chemical Process Industry, in Modern Fluoropolymers (Ed.: ), chapter 25, 1997, pp. 487–506, Wiley, New York;
- 20bJ. S. Humphrey, R. Amin-Sanayei, Vinylidene Fluoride Polymers in Encyclop. Polym. Sci. Techn., 3rd ed. ), 2004, Wiley, New York, Vol. 4, pp. 510–533.
- 21
- 21aB. Ameduri, Chem. Rev. 2009, 109, 6632–6686;
- 21bB. Améduri, Science of Synthesis Vol. 24 (Eds.: ), 2014, pp. 317–352.
- 22T. Soulestin, V. Ladmiral, F. Santos-Dominguez, B. Améduri, Progr. Polym Sci. 2017, 72, 16–60.
- 23Y. Patil, B. Améduri, Prog. Polym. Sci. 2013, 38, 703.
- 24M. Wehbi, S. Banerjee, A. Manseri, A. Mehdi, A. Alaaeddine, A. Hachem, B. Améduri, Macromolecules 2017, 50, 9329–9339.
- 25M. Wadekar, Y. R. Patil, B. Améduri, Macromolecules 2014, 47, 13–25.
- 26S. Banerjee, M. Wehbi, A. Manseri, A. Mehdi, A. Alaaeddine, A. Hachem, B. Améduri, ACS Appl. Mater. Interfaces 2017, 9, 6433–6443.
- 27
- 27aA. Alaaeddine, J. Vergnaud, J. Rolland, A. Vlad, J.-F. Gohy, B. Améduri, Polym. Chem. 2015, 6, 6021–6028;
- 27bF. Boujioui, F. Zhuge, H. Damerow, M. Webhi, B. Améduri, J.-.F Gohy, Chem. Mater. 2018, 6, 8514–8522.
- 28T. Hoshino, Y. Morizawa, Fluorinated Specialty Chemicals: Fluorinated Copolymers for Paints and Perfluoropolyethers for Coatings, in Ref. [9], chapter 5, pp. 110–126.
- 29A. T. Worm, W. Grootaert, Encycl. Polym. Sci. Techno. 2001, Vol. 2, 577–590.
- 30
- 30aC. Pasquet, C. Longuet, S. Hamdani-Devarennes, B. Améduri, F. Ganachaud, Silicone Surf. Sci. (Eds.: ), Springer, Washington, 2012, Chapter 5, pp. 115–178;
- 30bM. Owen, Poly[methyl(3,3,3-trifluoropropyl)siloxane], in Ref. [6]; chapter 9; pp. 183–200.
- 31
- 31aH. R. Allcock, Chemistry and Applications of Polyphosphazenes, Wiley, Hoboken, 2003;
- 31bH. R. Allcock, Fluorinated Polyphosphazenes, in Ref. [6], chapter 1, pp. 1–20;
- 31cStructural Diversity in Fluorinated Polyphosphazenes: Exploring the Change from Crystalline Thermoplastics to High-Performance Elastomers and Other New Materials; in Ref. [9], Vol. 2; Chapter 3, pp. 54–79.
- 32C. M. Friesen, B. Améduri, Progr. Polym Sci. 2018, 81, 238–280.
- 33
- 33aY. Osawa, S. Sato, T. Matsuda, Fluororubber Composition and Its Production. 2000 JP-A 2000-007835 (assigned to Shin Etsu Chemical Co. Ltd);
- 33bY. Osawa, S. Sato, T. Matsuda, Fluororubber Composition 2015, US 2015/024007S (assigned to Shin Etsu Chemical Co. Ltd);
- 33cT. Matsuda, Y. Osawa, N. Koike, Y. Sakano, Fluororubber Composition and Its Cured Product, 2003 JP-A 2003-201401(assigned to Shin Etsu Chemical Co. Ltd).
- 34
- 34aM. Tatemoto, in Polymeric Materials Encyclopedia (Eds.: ), CRC, Boca Raton, 1996, Vol. 5, pp. 3847–3862;
- 34bM. Tatemoto, T. Shimizu, Thermoplastic Elastomers in Modern Fluoropolymers (Ed.: ), Wiley, New York, 1997, Chapter 30, pp. 565–576.
- 35 Macromolecular Engineering: Precise Synthesis Materials Properties and Applications (Eds.: ), 2007, Wiley-VCH, Weinheim, pp. 605–642.
- 36
- 36aG. David, C. Boyer, J. Tonnar, B. Ameduri, P. Lacroix-Desmazes, B. Boutevin, Chem. Rev. 2006, 106, 3936–3962;
- 36bB. Ameduri, Macromolecules 2010, 43, 10163–10184;
- 36cS. Banerjee, A. Chakrabartyb, N. K. Singha, B. Ameduri, in Functional Polymers by Controlled Radical Polymerization: Concepts, Strategies and Applications (Eds.: ), chapter 6, pp. 215–268, Smithers RAPRA, 2017.
- 37T. C. Chung, Synthesis of Fluoropolymers using Borane-Mediated Control Radical Polymerization for Energy Storage Applications, in ref. [6]; chapter 12, pp. 291–314.
- 38M. Guerre, O. Gimello, K. Parra, B. Ameduri, V. Ladmiral, Macromolecules 2015, 48, 7810–7822.
- 39
- 39aT. Yagi, N. Tsuda, T. Noguchi, K. Sakaguchi, Y. Tanaka, M. Tatemoto, Eur. Patent-1990/Appl. 0,422,644 (assigned to Daikin Industries, Ltd.);
- 39bhttps://www.daikin.com/chm/products/rubber/index.html, last accessed on April 30th, 2018.
- 40A. Taguet, B. Améduri, B. Boutevin, Adv. Polym. Sci. 2005, 184, 127–211.
- 41B. Ameduri, A. Vitale, R. Bongiovanni, Chem. Rev. 2015, 115, 8835–8866.
- 42V. S. D. Voet, G. ten Brinke, K. Loos, J. Polym. Sci. Part A 2014, 52, 2861–2877.
- 43A. Asandei, Chem. Rev. 2016, 116, 2244–2274.
- 44
- 44aM. Guerre, S. M. Wadihur Rahaman, B. Améduri, R. Poli, V. Ladmiral, Macromolecules 2016, 49, 5386–5396;
- 44bM. Guerre, G. Lopez, T. Soulestin, C. Totée, B. Améduri, G. Silly, V. Ladmiral, Macromol. Chem. Phys. 2016, 217, 2275–2285.
- 45
- 45aM. Guerre, B. Améduri, V. Ladmiral, R. Poli, Polym. Chem. 2016, 7, 6918–6933;
- 45bM. Guerre, M. Uchiyama, E. Folgado, M. Semsarilar, B. Améduri, K. Sato, M. Kamigaito, V. Ladmiral, ACS Macro Lett. 2017, 6, 393–398;
- 45cS. Banerjee, Y. Patil, O. Gimello, B. Améduri, Chem. Commun. 2017, 53, 10910–10913.
- 46M. Guerre, J. Schmidt, Y. Talmon, B. Améduri, V. Ladmiral, Polym. Chem. 2017, 8, 1125–1128.
- 47M. Guerre, B. Améduri, V. Ladmiral, Polym. Chem. 2016, 7, 441–450.
- 48E. Folgado, M. Guerre, C. Bijani, V. Ladmiral, A.-M. Caminade, B. Améduri, A. Ouali, Polym. Chem. 2016, 7, 5625–5629.
- 49
- 49aG. Lopez, M. Guerre, J. P. Habas, B. Améduri, V. Ladmiral, Polym. Chem. 2017, 8, 3045–3049;
- 49bD. E. Apostolides, C. S. Patrickios, T. Sakai, M. Guerre, G. Lopez, B. Ameduri, V. Ladmiral, M. Simon, M. Gradzielski, D. Clemens, B. Ernould, A. Vlad, J.-F. Gohy, Macromolecules 2018, 51, 2476–2488.
- 50S. Banerjee, V. Ladmiral, A. Debuigne, C. Detrembleur, R. Poli, B. Améduri, Angew. Chem. Int. Ed. 2018, 57, 2934–2937;
Angew. Chem. 2018, 130, 2984–2987.
10.1002/ange.201712347 Google Scholar
- 51 Advanced Fluoride-Based Materials for Energy Conversion (Eds.: ), Elsevier, Amsterdam, 2015.
- 52
- 52aM. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Chem. Rev. 2004, 104, 4587–4612;
- 52bA. Ghielmi, P. Vaccarono, C. Troglia, V. Arcella, J. Power Sources 2005, 145, 108–115;
- 52cM. Yoshitake, A. Watakabe, Adv. Polym. Sci. 2008, 215, 127–155;
- 52dW. Grot, Fluorinated Ionomers, 2011, Elsevier, Amsterdam, ISBN 9781437744576;
- 52eS. Banerjee, A. Ghosh; Semi-fluorinated Aromatic Polymers and Their Properties, in Fluorinated Polymers (Eds.: ), volume 1, Chapter 5, pp. 103–189, RSC, Oxford, 2016;
- 52f Comprehensive Membrane Science and Engineering (Eds.: ) Vol. 1, Membrane Science and Technology, Elsevier, Amsterdam, 2017;
- 52gA. Kusoglu, A. Z. Weber, Chem. Rev. 2017, 117, 987.
- 53Y. Tanaka, Development of the Mirai Fuel Cell vehicle; In Hydrogen Energy Engineering, A Japanese Perspective (Eds.: ), chapter 34; pp. 461–476, 2016, Springer, Tokyo.
- 54
- 54aK. Ozawa, Lithium Ion Rechargeable Batteries: Materials, Technologies and New Applications, 2009, Wiley-VCH, Weinheim;
10.1002/9783527629022 Google Scholar
- 54bR. A. Sanayei, W. He, Applications of Polyvinylidene Fluoride Binders in Lithium Ion Batteries, in Ref. [51], chapter 10 pp. 231–242;
- 54cH. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L. M. Rodriguez-Martinez, M. Armand, Z. Zhou, Chem. Soc. Rev. 2017, 46, 797–815.
- 55
- 55aC. M. Costa, M. M. Silvab, S. Lanceros-Mendez, RSC Adv. 2013, 3, 11404–11417;
- 55bC. R. Bowen, H. A. Kim, P. M. Weaver, S. Dunn, Energy Environ. Sci. 2014, 7, 25–44;
- 55cY. Zhang, M. Xie, V. Adamaki, H. Khanbareh, C. R. Bowen, Chem. Soc. Rev. 2017, 46, 7757–7786.
- 56L. J. Romasanta, M. A. Lopez-Manchado, R. Verdejo, Prog. Polym. Sci. 2015, 51, 188–211.
- 57W. Eerenstein, N. D. Mathur, J. F. Scott, Nature 2006, 442, 759–765.
- 58S. Cho, J. S. Lee, J. Jang, Adv. Mater. Interfaces 2015, 2, 1500098 (1–13).
- 59F. Bouharras, M. Raihane, B. Améduri, unpublished results.
- 60F. Boschet, G. Kostov, B. Améduri, J. Fluorine Chem. 2009, 130, 1192–1199.
- 61
- 61aA. O. De Silva, S. A. Mabury, Environ. Sci. Technol. 2006, 40, 2903–2909;
- 61bM. P. Krafft, J. G. Riess, Chemosphere 2015, 129, 4–19;
- 61cS. Banerjee, J. Schmidt, Y. Talmon, H. Hori, T. Asai, B. Ameduri, Chem. Comm. 2018, 54, 11399–11402.
- 62https://www.chemours.com/Industrial_Bakery_Solutions/en_GB/sustainability/dibs_genx.html, last accessed April 2018.