Visible-Light Direct Conversion of Ethanol to 1,1-Diethoxyethane and Hydrogen over a Non-Precious Metal Photocatalyst
Yuguang Chao
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorWenqin Zhang
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorXuemei Wu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorNana Gong
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorZhihong Bi
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Key Laboratory of Carbon Material, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 P.R. China
Search for more papers by this authorYunqin Li
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorCorresponding Author
Prof. Jianfeng Zheng
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorProf. Zhenping Zhu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorCorresponding Author
Prof. Yisheng Tan
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorYuguang Chao
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorWenqin Zhang
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorXuemei Wu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorNana Gong
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorZhihong Bi
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
Key Laboratory of Carbon Material, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 P.R. China
Search for more papers by this authorYunqin Li
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorCorresponding Author
Prof. Jianfeng Zheng
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorProf. Zhenping Zhu
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorCorresponding Author
Prof. Yisheng Tan
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorGraphical Abstract
Remove hydrogen and acetalize: Photocatalytic ethanol dehydrogenation–acetalization to prepare value-added 1,1-diethoxyethane and H2 was achieved over non-precious metal CdS/Ni-MoS2 catalyst under visible light. This work provides a promising strategy for a green atom-economic application of bioethanol.
Abstract
Converting renewable biomass and their derivatives into chemicals and fuels has received much attention to reduce the dependence on fossil resources. Photocatalytic ethanol dehydrogenation–acetalization to prepare value-added 1,1-diethoxyethane and H2 was achieved over non-precious metal CdS/Ni-MoS2 catalyst under visible light. The system displays an excellent production rate and high selectivity of 1,1-diethoxyethane, 52.1 mmol g−1 h−1 and 99.2 %, respectively. In-situ electron spin resonance, photoluminescence spectroscopy and transient photocurrent responses were conducted to investigate the mechanism. This study provides a promising strategy for a green application of bioethanol.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201804664-sup-0001-misc_information.pdf880.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Chen, S. Pang, H. An, J. Zhu, S. Ye, Y. Gao, F. Fan, C. Li, Nat. Energy 2018, 3, 655.
- 2A. Abate, J. P. Correa-Baena, M. Saliba, M. S. Su′ait, F. Bella, Chem. Eur. J. 2018, 24, 3083.
- 3S. H. Li, N. Zhang, X. Xie, R. Luque, Y.-J. Xu, Angew. Chem. Int. Ed. 2018, 57, 13082;
Angew. Chem. 2018, 130, 13266.
10.1002/ange.201806221 Google Scholar
- 4F. Bella, M. Imperiyka, A. Ahmad, J. Photochem. Photobiol. A 2014, 289, 73.
- 5A. Sacco, F. Bella, S. De La Pierre, M. Castellino, S. Bianco, R. Bongiovanni, C. F. Pirri, ChemPhysChem 2015, 16, 960.
- 6G. Zhao, Y. Sun, W. Zhou, X. Wang, K. Chang, G. Liu, H. Liu, T. Kako, J. Ye, Adv. Mater. 2017, 29, 1703258.
- 7F. Bella, P. Renzi, C. Cavallo, C. Gerbaldi, Chem. Eur. J. 2018, 24, 12183.
- 8X. Wang, H. Wang, H. Zhang, W. Yu, X. Wang, Y. Zhao, X. Zong, C. Li, ACS Energy Lett. 2018, 3, 1159.
- 9D. Ompong, J. Singh, Org. Electron. 2018, 63, 104.
- 10F. Bella, A. Sacco, G. Massaglia, A. Chiodoni, C. F. Pirri, M. Quaglio, Nanoscale 2015, 7, 12010.
- 11P. Zhou, J. Lai, Y. Tang, Y. Chao, F. Lin, S. Guo, Appl. Catal. B 2018, 238, 161.
- 12Y. Chao, J. Zheng, H. Zhang, Y. Ma, F. Li, Y. Tan, Z. Zhu, Energy Technol. 2018, 6, 2132.
- 13N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
- 14Y. Chao, J. Zheng, H. Zhang, F. Li, F. Yan, Y. Tan, Z. Zhu, Chem. Eng. J. 2018, 346, 281.
- 15J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du, S. Z. Qiao, Nat. Commun. 2017, 8, 13907.
- 16Y. Honda, H. Hagiwara, S. Ida, T. Ishihara, Angew. Chem. Int. Ed. 2016, 55, 8045; Angew. Chem. 2016, 128, 8177.
- 17L. Li, J. Yan, T. Wang, Z. J. Zhao, J. Zhang, J. Gong, N. Guan, Nat. Commun. 2015, 6, 5881.
- 18C. Xu, W. Yang, Q. Guo, D. Dai, M. Chen, X. Yang, J. Am. Chem. Soc. 2014, 136, 602.
- 19G. Liu, L. Ma, L.-C. Yin, G. Wan, H. Zhu, C. Zhen, Y. Yang, Y. Liang, J. Tan, H.-M. Cheng, Joule 2018, 2, 1095.
- 20X. Zhou, E. M. Zolnhofer, N. T. Nguyen, N. Liu, K. Meyer, P. Schmuki, Angew. Chem. Int. Ed. 2015, 54, 13385;
Angew. Chem. 2015, 127, 13583.
10.1002/ange.201506797 Google Scholar
- 21F. Niu, S. Shen, L. Guo, J. Catal. 2016, 344, 141.
- 22S. Mohajernia, S. Hejazi, A. Mazare, N. T. Nguyen, P. Schmuki, Chem. Eur. J. 2017, 23, 12406.
- 23J. Saavedra, H. A. Doan, C. J. Pursell, L. C. Grabow, B. D. Chandler, Science 2014, 345, 1599.
- 24Z. Liu, Z. Yin, C. Cox, M. Bosman, X. Qian, N. Li, H. Zhao, Y. Du, J. Li, D. G. Nocera, Sci. Adv. 2016, 2, e 1501425.
- 25J. C. Serrano-Ruiz, R. Luque, A. Sepulveda-Escribano, Chem. Soc. Rev. 2011, 40, 5266.
- 26F. Frusteri, L. Spadaro, C. Beatrice, C. Guido, Chem. Eng. J. 2007, 134, 239.
- 27F. A. J. Meskens, Synthesis 1981, 501.
- 28M. R. Capeletti, L. Balzanob, G. Puente, M. Laborde, U. Sedran, Appl. Catal. A 2000, 198, L1.
- 29K. Bonhoff, F. Obenaus, Pat. DE, 411, 1980.
- 30K. Oppenlaender, F. Merger, R. Strickler, F. Hovemann, H. Schmidt, K. Starke, K. Stork, W. Vodrazka, Eur. Pat., 922, 1980.
- 31H. Zhang, Y. Wu, L. Li, Z. Zhu, ChemSusChem 2015, 8, 1226.
- 32T. W. Green, Protective Groups in Organic Synthesis, Wiley, New York, 1981.
- 33R. Morrison, R. Boyd, Organic chemistry, 4th ed., Allyn and Bacon, London, 1983.
- 34Y. Chao, J. Lai, Y. Yang, P. Zhou, Y. Zhang, Z. Mu, S. Li, J. Zheng, Z. Zhu, Y. Tan, Catal. Sci. Technol. 2018, 8, 3372.
- 35H. Zhang, Z. Zhu, Y. Wu, T. Zhao, L. Li, Green Chem. 2014, 4076.
- 36H. Zhang, W. Zhang, M. Zhao, P. Yang, Z. Zhu, Chem. Commun. 2017, 53, 1518.
- 37B. Weng, Q. Quan, Y.-J. Xu, J. Mater. Chem. A 2016, 4, 18366.
- 38J. S. Jang, U. A. Joshi, J. S. Lee, J. Phys. Chem. C 2007, 111, 13280.
- 39B. Han, S. Liu, N. Zhang, Y.-J. Xu, Z.-R. Tang, Appl. Catal. B 2017, 202, 298.
- 40S. Cao, Y. Chen, C.-C. Hou, X.-J. Lv, W.-F. Fu, J. Mater. Chem. A 2015, 3, 6096.
- 41H. Park, D. A. Reddy, Y. Kim, S. Lee, R. Ma, T. K. Kim, Chemistry 2017, 23, 13112.
- 42Y. Chao, J. Zheng, J. Chen, Z. Wang, S. Jia, H. Zhang, Z. Zhu, Catal. Sci. Technol. 2017, 7, 2798.
- 43W. Lai, Z. Chen, J. Zhu, L. Yang, J. Zheng, X. Yi, W. Fang, Nanoscale 2016, 8, 3823.
- 44Z. Yang, D. Gao, J. Zhang, Q. Xu, S. Shi, K. Tao, D. Xue, Nanoscale 2015, 7, 650.
- 45W. Park, J. Baik, T.-Y. Kim, K. Cho, W.-K. Hong, H.-J. Shin, T. Lee, ACS Nano 2014, 8, 4961.
- 46T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrovic, D. Volbers, R. Wyrwich, M. Doblinger, A. S. Susha, A. L. Rogach, F. Jackel, J. K. Stolarczyk, J. Feldmann, Nat. Mater. 2014, 13, 1013.
- 47H. Lu, J. Zhao, L. Li, L. Gong, J. Zheng, L. Zhang, Z. Wang, J. Zhang, Z. Zhu, Energy Environ. Sci. 2011, 4, 3384.
- 48P. Yang, J. Zhao, B. Cao, L. Li, Z. Wang, X. Tian, S. Jia, Z. Zhu, ChemCatChem 2015, 7, 2384.