Near-Infrared BODIPY-Acridine Dyads Acting as Heavy-Atom-Free Dual-Functioning Photosensitizers
Jasper Deckers
UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
Search for more papers by this authorTom Cardeynaels
UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000 Namur, Belgium
Search for more papers by this authorHuguette Penxten
UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
Search for more papers by this authorProf. Anitha Ethirajan
IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
UHasselt-Hasselt University, Institute for Materials Research (IMO), Nano-Biophysics and Soft Matter Interfaces (NSI), Wetenschapspark 1, 3590 Diepenbeek, Belgium
Search for more papers by this authorProf. Marcel Ameloot
UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
Search for more papers by this authorProf. Mikalai Kruk
Belarusian State Technological University, Sverdlov Str., 13a, 220006 Minsk, Belarus
Search for more papers by this authorProf. Benoît Champagne
UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000 Namur, Belgium
Search for more papers by this authorCorresponding Author
Prof. Wouter Maes
UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
Search for more papers by this authorJasper Deckers
UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
Search for more papers by this authorTom Cardeynaels
UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000 Namur, Belgium
Search for more papers by this authorHuguette Penxten
UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
Search for more papers by this authorProf. Anitha Ethirajan
IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
UHasselt-Hasselt University, Institute for Materials Research (IMO), Nano-Biophysics and Soft Matter Interfaces (NSI), Wetenschapspark 1, 3590 Diepenbeek, Belgium
Search for more papers by this authorProf. Marcel Ameloot
UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
Search for more papers by this authorProf. Mikalai Kruk
Belarusian State Technological University, Sverdlov Str., 13a, 220006 Minsk, Belarus
Search for more papers by this authorProf. Benoît Champagne
UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000 Namur, Belgium
Search for more papers by this authorCorresponding Author
Prof. Wouter Maes
UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
Search for more papers by this authorGraphical Abstract
A series of compact, heavy-atom-free, BODIPY-acridine photosensitizers are presented that are activated by near-infrared light and show balanced brightness and phototoxic power. The BODIPY chromophores are subjected to extensive photophysical characterization and quantum-chemical calculations, suggesting the involvement of exciplex states in singlet oxygen formation.
Abstract
Boron dipyrromethene (BODIPY) dyes represent a particular class within the broad array of potential photosensitizers. Their highly fluorescent nature opens the door for theragnostic applications, combining imaging and therapy using a single, easily synthesized chromophore. However, near-infrared absorption is strongly desired for photodynamic therapy to enhance tissue penetration. Furthermore, singlet oxygen should preferentially be generated without the incorporation of heavy atoms, as these often require additional synthetic efforts and/or afford dark cytotoxicity. Solutions for both problems are known, but have never been successfully combined in one simple BODIPY material. Here, we present a series of compact BODIPY-acridine dyads, active in the phototherapeutic window and showing balanced brightness and phototoxic power. Although the donor–acceptor design was envisioned to introduce a charge transfer state to assist in intersystem crossing, quantum-chemical calculations refute this. Further photophysical investigations suggest the presence of exciplex states and their involvement in singlet oxygen formation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202002549-sup-0001-misc_information.pdf3.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Frangos, J. R. Buscombe, Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 519.
- 2
- 2aX. Chen, S. T. C. Wong, Cancer Theranostics, Academic Press, Oxford, 2014;
10.1016/B978-0-12-407722-5.00001-3 Google Scholar
- 2bS. S. Kelkar, T. M. Reineke, Bioconjugate Chem. 2011, 22, 1879–1903;
- 2cJ. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, Chem. Rev. 2010, 110, 2795–2838.
- 3
- 3aX. Li, S. Kolemen, J. Yoon, E. U. Akkaya, Adv. Funct. Mater. 2017, 27, 1604053;
- 3bB. del Rosal, B. Jia, D. Jaque, Adv. Funct. Mater. 2018, 28, 1803733;
- 3cC.-N. Ko, G. Li, C.-H. Leung, D.-L. Ma, Coord. Chem. Rev. 2019, 381, 79–103.
- 4
- 4aT. J. Dougherty, J. Clin. Laser Med. Surg. 2002, 20, 3–7;
- 4bD. E. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380–387;
- 4cH. v. Tappeiner, Ergebnisse der Physiologie 1909, 8, 698–741.
- 5
- 5aC. S. Foote, Photochem. Photobiol. 1991, 54, 659-659;
- 5bS. Kwiatkowski, B. Knap, D. Przystupski, J. Saczko, E. Kedzierska, K. Knap-Czop, J. Kotlinska, O. Michel, K. Kotowski, J. Kulbacka, Biomed. Pharmacother. 2018, 106, 1098–1107.
- 6A. P. Castano, T. N. Demidova, M. R. Hamblin, Photodiagn. Photodyn. Ther. 2004, 1, 279–293.
- 7
- 7aJ. F. Lovell, T. W. Liu, J. Chen, G. Zheng, Chem. Rev. 2010, 110, 2839–2857;
- 7bT. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst. 1998, 90, 889–905;
- 7cN. L. Oleinick, R. L. Morris, I. Belichenko, Photochem. Photobiol. Sci. 2002, 1, 1–21;
- 7dJ. M. Dabrowski, L. G. Arnaut, Photochem. Photobiol. Sci. 2015, 14, 1765–1780.
- 8B. C. Wilson, M. S. Patterson, Phys. Med. Biol. 2008, 53, R61–R109.
- 9
- 9aJ. Moan, K. Berg, Photochem. Photobiol. 1991, 53, 549–553;
- 9bJ. Moan, J. Photochem. Photobiol. B 1990, 6, 343–344.
- 10
- 10aW. M. Sharman, C. M. Allen, J. E. van Lier, Drug Discovery Today 1999, 4, 507–517;
- 10bZ. Huang, Technol. Cancer Res. Treat. 2005, 4, 283–293.
- 11
- 11aM. R. Hamblin, T. Hasan, Photochem. Photobiol. Sci. 2004, 3, 436–450;
- 11bT. Dai, B. B. Fuchs, J. J. Coleman, R. A. Prates, C. Astrakas, T. G. St Denis, M. S. Ribeiro, E. Mylonakis, M. R. Hamblin, G. P. Tegos, Front. Microbiol. 2012, 3, 120;
- 11cP. Babilas, S. Schreml, M. Landthaler, R. M. Szeimies, Photodermatol. Photoimmunol. Photomed. 2010, 26, 118–132;
- 11dM. A. MacCormack, Semin. Cutan. Med. Surg. 2008, 27, 52–62;
- 11eH. I. Pass, J. Natl. Cancer Inst. 1993, 85, 443–456.
- 12
- 12aT. J. Dougherty, S. L. Marcus, Eur. J. Cancer 1992, 28, 1734–1742;
- 12bK. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, Lasers Med. Sci. 2009, 24, 259–268.
- 13K. Deng, C. Li, S. Huang, B. Xing, D. Jin, Q. Zeng, Z. Hou, J. Lin, Small 2017, 13, 1702299.
- 14P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, CA Cancer J. Clin. 2011, 61, 250–281.
- 15A. Juzeniene, K. P. Nielsen, J. Moan, J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 7–28.
- 16
- 16aR. R. Allison, G. H. Downie, R. Cuenca, X.-H. Hu, C. J. H. Childs, C. H. Sibata, Photodiagn. Photodyn. Ther. 2004, 1, 27–42;
- 16bM. R. Detty, S. L. Gibson, S. J. Wagner, J. Med. Chem. 2004, 47, 3897–3915;
- 16cV. Kral, J. Davis, A. Andrievsky, J. Kralova, A. Synytsya, P. Pouckova, J. L. Sessler, J. Med. Chem. 2002, 45, 1073–1078;
- 16dR. D. Teo, J. Y. Hwang, J. Termini, Z. Gross, H. B. Gray, Chem. Rev. 2017, 117, 2711–2729;
- 16eS. Swavey, M. Tr, in Recent Advances in the Biology, Therapy and Management of Melanoma, 2013;
- 16fS. J. Wagner, Transfus. Med. Rev. 2002, 16, 61–66;
- 16gA. E. O′Connor, W. M. Gallagher, A. T. Byrne, Photochem. Photobiol. 2009, 85, 1053–1074.
- 17R. K. Pandey, J. Porphyrins Phthalocyanines 2000, 04, 368–373.
- 18
- 18aS. G. Awuah, Y. You, RSC Adv. 2012, 2, 11169–11183;
- 18bA. Turksoy, D. Yildiz, E. U. Akkaya, Coord. Chem. Rev. 2019, 379, 47–64;
- 18cL. Yao, S. Xiao, F. Dan, J. Chem. 2013, 2013, 1–10;
- 18dA. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2013, 42, 77–88;
- 18eC. S. Kue, S. Y. Ng, S. H. Voon, A. Kamkaew, L. Y. Chung, L. V. Kiew, H. B. Lee, Photochem. Photobiol. Sci. 2018, 17, 1691–1708;
- 18fL. Huang, G. Han, Small Methods 2018, 2, 1700370;
- 18gW. Sun, X. Zhao, J. Fan, J. Du, X. Peng, Small 2019, 15, 1804927;
- 18hM. L. Agazzi, M. B. Ballatore, A. M. Durantini, E. N. Durantini, A. C. Tomé, J. Photochem. Photobiol. C 2019, 40, 21–48;
- 18iD. Chen, Z. Zhong, Q. Ma, J. Shao, W. Huang, X. Dong, ACS Appl. Mater. Interfaces 2020, 12, 26914–26925;
- 18jP. Chinna Ayya Swamy, G. Sivaraman, R. N. Priyanka, S. O. Raja, K. Ponnuvel, J. Shanmugpriya, A. Gulyani, Coord. Chem. Rev. 2020, 411, 213233;
- 18kW. Lin, D. Colombani-Garay, L. Huang, C. Duan, G. Han, WIREs Nanomed. Nanobiotechnol. 2020, 12, e1627.
- 19
- 19aA. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891–4932;
- 19bG. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184–1201; Angew. Chem. 2008, 120, 1202–1219;
- 19cN. Boens, B. Verbelen, W. Dehaen, Eur. J. Org. Chem. 2015, 6577–6595.
- 20
- 20aA. B. Descalzo, H. J. Xu, Z. Shen, K. Rurack, Ann. N. Y. Acad. Sci. 2008, 1130, 164–171;
- 20bY. Ni, J. Wu, Org. Biomol. Chem. 2014, 12, 3774–3791;
- 20cH. Lu, J. Mack, Y. Yang, Z. Shen, Chem. Soc. Rev. 2014, 43, 4778–4823;
- 20dL. Yuan, W. Lin, K. Zheng, L. He, W. Huang, Chem. Soc. Rev. 2013, 42, 622–661.
- 21
- 21aJ. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015, 44, 8904–8939;
- 21bK. Chen, Y. Dong, X. Zhao, M. Imran, G. Tang, J. Zhao, Q. Liu, Front. Chem. 2019, 7, 821;
- 21cJ. Wang, Q. Gong, L. Wang, E. Hao, L. Jiao, J. Porphyrins Phthalocyanines 2020, 24, 603–635.
- 22
- 22aJ. Killoran, L. Allen, J. F. Gallagher, W. M. Gallagher, D. F. O′Shea, Chem. Commun. 2002, 1862–1863;
- 22bA. Gorman, J. Killoran, C. O′Shea, T. Kenna, W. M. Gallagher, D. F. O′Shea, J. Am. Chem. Soc. 2004, 126, 10619–10631;
- 22cT. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, J. Am. Chem. Soc. 2005, 127, 12162–12163.
- 23
- 23aE. G. Azenha, A. C. Serra, M. Pineiro, M. M. Pereira, J. Seixas de Melo, L. G. Arnaut, S. J. Formosinho, A. M. d. A. Rocha Gonsalves, Chem. Phys. 2002, 280, 177–190;
- 23bJ. Zou, Z. Yin, K. Ding, Q. Tang, J. Li, W. Si, J. Shao, Q. Zhang, W. Huang, X. Dong, ACS Appl. Mater. Interfaces 2017, 9, 32475–32481.
- 24
- 24aJ. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323–5351;
- 24bJ. Zhao, K. Chen, Y. Hou, Y. Che, L. Liu, D. Jia, Org. Biomol. Chem. 2018, 16, 3692–3701;
- 24cY. Hou, X. Zhang, K. Chen, D. Liu, Z. Wang, Q. Liu, J. Zhao, A. Barbon, J. Mater. Chem. C 2019, 7, 12048–12074.
- 25M. A. Filatov, Org. Biomol. Chem. 2020, 18, 10–27.
- 26L. Huang, X. Yu, W. Wu, J. Zhao, Org. Lett. 2012, 14, 2594–2597.
- 27
- 27aR. L. Watley, S. G. Awuah, M. Bio, R. Cantu, H. B. Gobeze, V. N. Nesterov, S. K. Das, F. D′Souza, Y. You, Chem. Asian J. 2015, 10, 1335–1343;
- 27bS. Ji, J. Ge, D. Escudero, Z. Wang, J. Zhao, D. Jacquemin, J. Org. Chem. 2015, 80, 5958–5963.
- 28D. Escudero, Acc. Chem. Res. 2016, 49, 1816–1824.
- 29
- 29aZ. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899–4032;
- 29bJ. Verhoeven, J. Photochem. Photobiol. C 2006, 7, 40–60.
- 30N. Epelde-Elezcano, E. Palao, H. Manzano, A. Prieto-Castaneda, A. R. Agarrabeitia, A. Tabero, A. Villanueva, S. de la Moya, I. Lopez-Arbeloa, V. Martinez-Martinez, M. J. Ortiz, Chem. Eur. J. 2017, 23, 4837–4848.
- 31As the exact structures of these “exciplexes” (i.e. excited state complexes) remain unknown for now, we prefer to use this more general term.
- 32N. Mataga, H. Chosrowjan, S. Taniguchi, J. Photochem. Photobiol. C 2005, 6, 37–79.
- 33
- 33aK. Rurack, M. Kollmannsberger, J. Daub, Angew. Chem. Int. Ed. 2001, 40, 385–387;
Angew. Chem. 2001, 113, 396–399;
10.1002/1521-3757(20010119)113:2<396::AID-ANGE396>3.0.CO;2-W Google Scholar
- 33bO. Buyukcakir, O. A. Bozdemir, S. Kolemen, S. Erbas, E. U. Akkaya, Org. Lett. 2009, 11, 4644–4647.
- 34
- 34aN. A. Kukhta, H. F. Higginbotham, T. Matulaitis, A. Danos, A. N. Bismillah, N. Haase, M. K. Etherington, D. S. Yufit, P. R. McGonigal, J. V. Gražulevičius, A. P. Monkman, J. Mater. Chem. C 2019, 7, 9184–9194;
- 34bM. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.
- 35
- 35aN. Ziebart, P. Schroeer, K. Rueck-Braun, Tetrahedron 2018, 74, 5561–5566;
- 35bY. Rong, C. Wu, J. Yu, X. Zhang, F. Ye, M. Zeigler, M. E. Gallina, I. C. Wu, Y. Zhang, Y. H. Chan, W. Sun, K. Uvdal, D. T. Chiu, ACS Nano 2013, 7, 376–384;
- 35cY. Zhou, Z. Zhou, Y. Li, W. Yang, Catal. Commun. 2015, 64, 96–100.
- 36
- 36aY. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241;
- 36bJ. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3093.
- 37
- 37aR. W. Redmond, J. N. Gamlin, Photochem. Photobiol. 1999, 70, 391–475;
- 37bF. Wilkinson, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data 1993, 22, 113–262.
- 38H. Heitele, P. Finckh, S. Weeren, F. Poellinger, M. E. Michel-Beyerle, J. Phys. Chem. 1989, 93, 5173–5179.
- 39C. Reichardt, Chem. Rev. 1994, 94, 2319–2358.
- 40M. R. Momeni, A. Brown, J. Chem. Theory Comput. 2015, 11, 2619–2632.
- 41S. Chibani, B. Le Guennic, A. Charaf-Eddin, A. D. Laurent, D. Jacquemin, Chem. Sci. 2013, 4, 1950–1963.
- 42
- 42aD. Jacquemin, E. A. Perpete, I. Ciofini, C. Adamo, J. Chem. Theory Comput. 2010, 6, 1532–1537;
- 42bC. Brückner, B. Engels, Chem. Phys. 2017, 482, 319–338.
- 43M. Kasha, Discuss. Faraday Soc. 1950, 9, 14–19.
- 44T. Le Bahers, C. Adamo, I. Ciofini, J. Chem. Theory Comput. 2011, 7, 2498–2506.
- 45D. Rehm, A. Weller, Israel J. Chem. 1970, 8, 259–271.
- 46H. Kang, Y. Si, Y. Liu, X. Zhang, W. Zhang, Y. Zhao, B. Yang, Y. Liu, Z. Liu, J. Phys. Chem. A 2018, 122, 5574–5579.
- 47A. Nano, R. Ziessel, P. Stachelek, M. A. Alamiry, A. Harriman, ChemPhysChem 2014, 15, 177–186.
- 48A. C. Benniston, G. Copley, H. Lemmetyinen, N. V. Tkachenko, ChemPhysChem 2010, 11, 1685–1692.
- 49R. Penjweini, S. Deville, L. D′Olieslaeger, M. Berden, M. Ameloot, A. Ethirajan, J. Controlled Release 2015, 218, 82–93.