BOPHY-Fullerene C60 Dyad as a Photosensitizer for Antimicrobial Photodynamic Therapy
Edwin J. Gonzalez Lopez
IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorProf. Ariel M. Sarotti
Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéutica, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
Search for more papers by this authorDr. Sol R. Martínez
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorDr. Lorena P. Macor
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorDr. Javier E. Durantini
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorMelisa Renfige
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorDr. Miguel A. Gervaldo
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorProf. Luis A. Otero
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorDr. Andrés M. Durantini
IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorProf. Dr. Edgardo N. Durantini
IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorCorresponding Author
Dr. Daniel A. Heredia
IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorEdwin J. Gonzalez Lopez
IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorProf. Ariel M. Sarotti
Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéutica, Universidad Nacional de Rosario, 2000 Rosario, Santa Fe, Argentina
Search for more papers by this authorDr. Sol R. Martínez
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorDr. Lorena P. Macor
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorDr. Javier E. Durantini
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorMelisa Renfige
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorDr. Miguel A. Gervaldo
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorProf. Luis A. Otero
IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorDr. Andrés M. Durantini
IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorProf. Dr. Edgardo N. Durantini
IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorCorresponding Author
Dr. Daniel A. Heredia
IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
Search for more papers by this authorGraphical Abstract
Photosensitizer: The first BOPHY–fullerene C60 dyad (BP-C60) has been synthesized and obtained as two atropisomers. The presence of the BOPHY light-harvesting antenna in the dyad increases the absorption of the fullerene moiety in the visible region and improves its photodynamic action. Photoinduced energy/electron transfer processes (EnT/PeT) take place from BOPHY to fullerene C60. The dyad exhibits an efficient production of reactive oxygen species. BP-C60 is a promising heavy-atom-free photosensitizer with potential application in photodynamic treatments..
Abstract
A novel BOPHY–fullerene C60 dyad (BP-C60) was designed as a heavy-atom-free photosensitizer (PS) with potential uses in photodynamic treatment and reactive oxygen species (ROS)-mediated applications. BP-C60 consists of a BOPHY fluorophore covalently attached to a C60 moiety through a pyrrolidine ring. The BOPHY core works as a visible-light-harvesting antenna, while the fullerene C60 subunit elicits the photodynamic action. This fluorophore–fullerene cycloadduct, obtained by a straightforward synthetic route, was fully characterized and compared with its individual counterparts. The restricted rotation around the single bond connecting the BOPHY and pyrrolidine moieties led to the formation of two atropisomers. Spectroscopic, electrochemical, and computational studies disclose an efficient photoinduced energy/electron transfer process from BOPHY to fullerene C60. Photodynamic studies indicate that BP-C60 produces ROS by both photomechanisms (type I and type II). Moreover, the dyad exhibits higher ROS production efficiency than its individual constitutional components. Preliminary screening of photodynamic inactivation on bacteria models (Staphylococcus aureus and Escherichia coli) demonstrated the ability of this dyad to be used as a heavy-atom-free PS. To the best of our knowledge, this is the first time that not only a BOPHY–fullerene C60 dyad is reported, but also that a BOPHY derivative is applied to photoinactivate microorganisms. This study lays the foundations for the development of new BOPHY-based PSs with plausible applications in the medical field.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202103884-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. R. Hamblin, Curr. Opin. Microbiol. 2016, 33, 67–73.
- 2M. R. Hamblin, G. Jori, Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications, 1st ed., Royal Society of Chemistry, 2011.
- 3T. Dai, Y.-Y. Huang, M. R. Hamblin, Photodiagn. Photodyn. Ther. 2009, 6, 170–188.
- 4F. Cieplik, D. Deng, W. Crielaard, W. Buchalla, E. Hellwig, A. Al-Ahmad, T. Maisch, Crit. Rev. Microbiol. 2018, 44, 571–589.
- 5A. Tavares, C. M. B. Carvalho, M. A. Faustino, M. G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes, E. Alves, A. Almeida, Mar. Drugs 2010, 8, 91–105.
- 6N. Kashef, M. R. Hamblin, Drug Resist. Updates 2017, 31, 31–42.
- 7M. Klausen, M. Ucuncu, M. Bradley, Molecules 2020, 25, 5239.
- 8M. R. Hamblin, Photochem. Photobiol. Sci. 2018, 17, 1515–1533.
- 9A. M. Durantini, D. A. Heredia, J. E. Durantini, E. N. Durantini, Eur. J. Med. Chem. 2018, 144, 651–661.
- 10L. Sobotta, P. Skupin-Mrugalska, J. Piskorz, J. Mielcarek, Eur. J. Med. Chem. 2019, 175, 72–106.
- 11L. Sobotta, P. Skupin-Mrugalska, J. Piskorz, J. Mielcarek, Dyes Pigm. 2019, 163, 337–355.
- 12S. K. Sharma, L. Y. Chiang, M. R. Hamblin, Nanomedicine 2011, 6, 1813–1825.
- 13Y. B. Palacios, J. E. Durantini, D. A. Heredia, S. R. Martínez, L. González de la Torre, A. M. Durantini, Photochem. Photobiol. 2021, 97, 1431–1444.
- 14Y.-Y. Huang, S. K. Sharma, R. Yin, T. Agrawal, L. Y. Chiang, M. R. Hamblin, J. Biomed. Nanotechnol. 2014, 10, 1918–1936.
- 15I. V. Bagrov, I. M. Belousova, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, T. K. Kris′ko, T. D. Murav′eva, Opt. Spectrosc. 2008, 105, 720–725.
- 16“Fullerene Derivatives in Photodynamic Inactivation of Microorganisms”, M. B. Spesia, M. E. Milanesio, E. N. Durantini in Nanostructures for Antimicrobial Therapy, Vol. 1 (Eds.: A. Ficai, A. M. Grumezescu), Elsevier, Amsterdam, 2017, pp. 413–433.
- 17M. L. Agazzi, J. E. Durantini, N. S. Gsponer, A. M. Durantini, S. G. Bertolotti, E. N. Durantini, ChemPhysChem 2019, 20, 1110–1125.
- 18M. B. Ballatore, M. B. Spesia, M. E. Milanesio, E. N. Durantini, RSC Adv. 2018, 8, 22876–22886.
- 19M. L. Agazzi, V. A. S. Almodovar, N. S. Gsponer, S. Bertolotti, A. C. Tomé, E. N. Durantini, Org. Biomol. Chem. 2020, 18, 1449–1461.
- 20E. Öztürk, H. Eserci, E. Okutan, J. Photochem. Photobiol. A 2019, 385, 112022.
- 21M. B. Ballatore, M. B. Spesia, M. E. Milanesio, E. N. Durantini, Euro. J. Med. Chem. 2014, 83, 685–694.
- 22P. Remón, C. Parente Carvalho, C. Baleizão, M. N. Berberan-Santos, U. Pischel, ChemPhysChem 2013, 14, 2717–2724.
- 23H. Ünlü, E. Okutan, Dyes Pigm. 2017, 142, 340–349.
- 24F. Wang, X. Cui, Z. Lou, J. Zhao, M. Bao, Chem. Commun. 2014, 50, 15627–15630.
- 25I.-S. Tamgho, A. Hasheminasab, J. T. Engle, V. N. Nemykin, C. J. Ziegler, J. Am. Chem. Soc. 2014, 136, 5623–5626.
- 26S. Boodts, E. Fron, J. Hofkens, W. Dehaen, Coord. Chem. Rev. 2018, 371, 1–10.
- 27M. Ponce-Vargas, C. Azarias, D. Jacquemin, B. Le Guennic, J. Phys. Chem. B 2017, 121, 10850–10858.
- 28Y. Li, H. Zhou, S. Yin, H. Jiang, N. Niu, H. Huang, S. A. Shahzad, C. Yu, Sens. Actuators B 2016, 235, 33–38.
- 29K. Chen, Y. Dong, X. Zhao, M. Imran, G. Tang, J. Zhao, Q. Liu, Front. Chem. 2019, 7, 821.
- 30J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015, 44, 8904–8939.
- 31C. Zhang, J. Zhao, J. Mater. Chem. C 2016, 4, 1623–1632.
- 32T.-F. Cui, J. Zhang, X.-D. Jiang, Y.-J. Su, C.-L. Sun, J.-L. Zhao, Chin. Chem. Lett. 2016, 27, 190–194.
- 33S. H. Lim, C. Thivierge, P. Nowak-Sliwinska, J. Han, H. van den Bergh, G. Wagnières, K. Burgess, H. B. Lee, J. Med. Chem. 2010, 53, 2865–2874.
- 34Ł. Łapok, I. Cieślar, T. Pędziński, K. M. Stadnicka, M. Nowakowska, ChemPhysChem 2020, 21, 725–740.
- 35F. Lv, D. Liu, W.-H. Zheng, Y. Zhao, F. Song, ACS Appl. Nano Mater. 2021, 4, 6012–6019.
- 36L. Wu, K. Burgess, Chem. Commun. 2008, 40, 4933–4935.
- 37A. Hirsch, M. Brettreich, Fullerenes: Chemistry and Reactions, Wiley-VCH, Weinheim, 2005.
10.1002/3527603492 Google Scholar
- 38S.-E Zhu, X. Cheng, Y.-J. Li, C.-K. Mai, Y.-S. Huang, G.-W. Wang, R.-F. Peng, B. Jin, S.-J. Chu, Org. Biomol. Chem. 2012, 10, 8720–8729.
- 39D. A. Heredia, A. M. Durantini, A. M. Sarotti, N. S. Gsponer, D. D. Ferreyra, S. G. Bertolotti, M. E. Milanesio, E. N. Durantini, Chem. Eur. J. 2018, 24, 5950–5961.
- 40A. Ruiz, J. Coro, L. Almagro, J. A. Ruiz, D. Molero, E. E. Maroto, S. Filippone, M. Á. Herranz, R. Martínez-Álvarez, J. C. Sancho-García, F. Di Meo, M. Suárez, N. Martín, J. Org. Chem. 2013, 78, 2819–2826.
- 41A. Ruíz, C. Morera-Boado, L. Almagro, J. Coro, E. E. Maroto, M. Á. Herranz, S. Filippone, D. Molero, R. Martínez-Álvarez, J. M. Garcia de la Vega, M. Suárez, N. Martín, J. Org. Chem. 2014, 79, 3473–3486.
- 42J. Helaja, A. Y. Tauber, Y. Abel, N. V. Tkachenko, H. Lemmetyinen, I. Kilpeläinen, P. H. Hynninen, J. Chem. Soc. Perkin Trans. 1 1999, 2403–2408.
- 43E. Kumarasamy, R. Raghunathan, M. P. Sibi, J. Sivaguru, Chem. Rev. 2015, 115, 11239–11300.
- 44Z. Zeng, G. Kociok-Köhn, T. J. Woodman, M. G. Rowan, I. S. Blagbrough, ACS Omega 2021, 6, 12769–12786.
- 45M. O. Marcarino, M. M. Zanardi, S. Cicetti, A. M. Sarotti, Acc. Chem. Res. 2020, 53, 1922–1932.
- 46S. G. Smith, J. M. Goodman, J. Org. Chem. 2009, 74, 4597–4607.
- 47E. Reynoso, A. M. Durantini, C. A. Solis, L. P. Macor, L. A. Otero, M. A. Gervaldo, E. N. Durantini, D. A. Heredia, RSC Adv. 2021, 11, 23519–23532.
- 48C. Yu, L. Jiao, P. Zhang, Z. Feng, C. Cheng, Y. Wei, X. Mu, E. Hao, Org. Lett. 2014, 16, 3048–3051.
- 49M. B. Ballatore, J. Durantini, N. S. Gsponer, M. B. Suarez, M. Gervaldo, L. Otero, M. B. Spesia, M. E. Milanesio, E. N. Durantini, Environ. Sci. Technol. 2015, 49, 7456–7463.
- 50M. L. Agazzi, M. B. Spesia, N. S. Gsponer, M. E. Milanesio, E. N. Durantini, J. Photochem. Photobiol. A 2015, 310, 171–179.
- 51R. M. Williams, J. M. Zwier, J. W. Verhoeven, J. Am. Chem. Soc. 1995, 117, 4093–4099.
- 52J. Mugnier, J. Pouget, J. Bourson, B. Valeur, J. Lumin. 1985, 33, 273–300.
- 53C.-K. Tai, W.-Y. Hsieh, P.-L. Yeh, H.-L. Chiu, B.-C. Wang, J. Chin. Chem. Soc. 2013, 60, 251–260.
- 54I. D. Petsalakis, N. Tagmatarchis, G. Theodorakopoulos, J. Phys. Chem. C 2007, 111, 14139–14149.
- 55C. O. Obondi, G. N. Lim, P. A. Karr, V. N. Nesterov, F. D′Souza, Phys. Chem. Chem. Phys. 2016, 18, 18187–18200.
- 56S. K. Das, B. Song, A. Mahler, V. N. Nesterov, A. K. Wilson, O. Ito, F. D′Souza, J. Phys. Chem. C 2014, 118, 3994–4006.
- 57M. Carano, M. Marcaccio, F. Paolucci in Fullerenes: Principles and Applications (Eds.: F. Langa, J.-F. Nierengarten), The Royal Society of Chemistry, Cambridge, 2007, pp. 51–75.
10.1039/9781847557711-00051 Google Scholar
- 58L. Echegoyen, L. E. Echegoyen, Acc. Chem. Res. 1998, 31, 593–601.
- 59M. Gervaldo, P. Liddell, G. Kodis, B. Brennan, C. Johnson, J. Bridgewater, A. Moore, T. Moore, D. Gust, Photochem. Photobiol. Sci. 2010, 9, 890–900.
- 60M. Otero, T. Dittrich, J. Rappich, D. A. Heredia, F. Fung, E. Durantini, L. Otero, Electrochim. Acta 2015, 173, 316–322.
- 61P. K. Poddutoori, A. S. D. Sandanayaka, N. Zarrabi, T. Hasobe, O. Ito, A. van der Est, J. Phys. Chem. A 2011, 115, 709–717.
- 62V. Bandi, F. P. D′Souza, H. B. Gobeze, F. D′Souza, Chem. Eur. J. 2015, 21, 2669–2679.
- 63M. B. Spesia, M. E. Milanesio, E. N. Durantini, Eur. J. Med. Chem. 2008, 43, 853–861.
- 64Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, T. Nagano, J. Am. Chem. Soc. 2005, 125, 12803–12809.
- 65G. J. Maghzal, K. H. Krause, R. Stocker, V. Jaquet, Free Radical Biol. Med. 2012, 53, 1903–1918.
- 66M. H. Chaves de Vasconcelos Catão, A. L. Araújo Batista, Pesqui. Bras. Odontopediatria Clín. Integr. 2020, 20, e4980.
- 67M. Balouiri, M. S. Saad, K. Ibnsouda, J. Pharm. Anal. 2016, 6, 71–79.
- 68A. Kourmouli, M. Valenti, E. V. Rijn, H. J. E. Beaumont, O.-I. Kalantzi, A. Schmidt-Ott, G. Biskos, J. Nanopart. Res. 2018, 20, 62.
- 69V. J. Boyle, M. E. Fancher, R. W. Ross, Antimicrob. Agents Chemother. 1973, 3, 418–424.
- 70T. J. Silhavy, D. Kahne, S. Walker, Cold Spring Harbor Perspect. Biol. 2010, 2, a000414.
- 71M. Tim, J. Photochem. Photobiol. B 2015, 150, 2–10.
- 72S. George, M. R. Hamblin, A. Kishen, Photochem. Photobiol. Sci. 2009, 8, 788–795.
- 73Y. B. Palacios, S. C. Santamarina, J. E. Durantini, E. N. Durantini, A. M. Durantini, J. Photochem. Photobiol. B 2020, 212, 112049.
- 74S. R. Martínez, Y. B. Palacios, D. A. Heredia, M. L. Agazzi, A. M. Durantini, ACS Infect. Dis. 2019, 5, 1624–1633.
- 75Y. Zhang, T. Dai, M. Wang, D. Vecchio, L. Y. Chiang, M. R. Hamblin, Nanomedicine 2015, 10, 603–614.
- 76C. Simões, M. C. Gomes, M. G. P. M. S. Neves, Â. Cunha, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, A. Almeida, M. A. F. Faustino, Catal. Today 2016, 266, 197–204.
- 77S. Halder, K. K. Yadav, R. Sarkar, S. Mukherjee, P. Saha, S. Haldar, S. Karmakar, T. Sen, Springerplus 2015, 4, 672.
- 78D. A. Heredia, A. M. Durantini, J. E. Durantini, E. N. Durantini, J. Photochem. Photobiol. C 2022, 51, 100471.
- 79E. Alves, M. A. F. Faustino, M. G. P. M. S. Neves, A. Cunha, J. Tome, A. Almeida, Future Med. Chem. 2014, 6, 141–164.
- 80P. Pallavicini, G. Dacarro, A. Taglietti, Eur. J. Inorg. Chem. 2018, 4846–4855.
- 81M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminf. 2012, 4, 17.
- 82D. A. Heredia, J. E. Durantini, D. D. Ferreyra, E. Reynoso, E. J. Gonzalez Lopez, A. M. Durantini, M. E. Milanesio, E. N. Durantini, J. Photochem. Photobiol. B 2021, 225, 112321.
- 83CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, 2012.