Tetrakis(oxadiazolylphenyl)pyrazines: New St. Andrew′s Cross-Shaped Liquid Crystals
Dr. Nico Röder
Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55118 Mainz, Germany
Search for more papers by this authorDr. Tomasz Marszalek
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
Search for more papers by this authorDaniel Limbach
Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55118 Mainz, Germany
Search for more papers by this authorCorresponding Author
Prof. Wojciech Pisula
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
Search for more papers by this authorCorresponding Author
Prof. Heiner Detert
Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55118 Mainz, Germany
Search for more papers by this authorDr. Nico Röder
Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55118 Mainz, Germany
Search for more papers by this authorDr. Tomasz Marszalek
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
Search for more papers by this authorDaniel Limbach
Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55118 Mainz, Germany
Search for more papers by this authorCorresponding Author
Prof. Wojciech Pisula
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
Search for more papers by this authorCorresponding Author
Prof. Heiner Detert
Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10–14, 55118 Mainz, Germany
Search for more papers by this authorDedicated to Prof. Gerhard Wenz on the occasion of his retirement
Graphical Abstract
Tetraphenylpyrazine is the core of a new series of electron-deficient fluorophores. Fourfold Huisgen reaction with tetrazoles generates the diaryl-1,3,4-oxadiazole arms with alkoxy chains in the periphery. The saddle-shaped molecules assemble to columns. When alkoxy chains of 4 - 16 carbons are attached, the molecules form broad mesophases up to 246°C and typically self-assemble in hexagonal columnar superstructures.
Abstract
π-Conjugated molecules with the shape of St. Andrew′s cross have been synthesized via fourfold Huisgen reaction. Four 2,5-diaryl-1,3,4-oxadiazol arms are attached to a central pyrazine nucleus. These fluorescent stars, when decorated with a rim of eight alkoxy side chains are discotic liquid crystals. Depending on the substitution pattern, the width of the liquid phase varies within a broad range of 25 °C to 250 °C. In their liquid crystalline phase, the molecules assemble in a typical hexagonal columnar supramolecular arrangement.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc201800936-sup-0001-misc_information.pdf6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Geelhaar, K. Griesar, B. Reckmann, Angew. Chem. 2013, 125, 8960-8971;
10.1002/ange.201301457 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 8798–8809;
- 1bG. H. Heilmeier, L. A. Zanoni, L. A. Barton, Proc. IEEE 1968, 56, 1162–1171;
- 1cM. Schadt, W. Helfrich, Appl. Phys. Lett. 1971, 18, 127–128;
- 1dS. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem. Int. Ed. 2007, 46, 4832–4887; Angew. Chem. 2007, 119, 4916–4973.
- 2
- 2aD. Vorländer, Ber. Dtsch. Chem. Ges. 1907, 40, 1970–1972;
- 2bW. Pisula, K. Muellen in Handbook of Liquid Crystals 2nd ed. (Ed.: J. W. Goodby), Wiley-VCH, Weinheim, 2014, 8, pp. 627–673;
- 2cT. Wöhrle, I. Wurzbach, J. Kirres, A. Kostidou, N. Kapernaum, J. Litterscheidt, J. C. Haenle, P. Staffeld, A. Baro, F. Giesselmann, S. Laschat, Chem. Rev. 2016, 116, 1139–1241.
- 3F. Tutin, J. Chem. Soc. Trans. 1910, 97, 2495–2524.
- 4S. Chandrasekhar, B. K. Sadashiva, K. A. Suresh, Pramana 1977, 9, 471–480.
- 5
- 5aJ. M. Warman, J. Piris, W. Pisula, M. Kastler, D. Wasserfallen, K. Müllen, J. Am. Chem. Soc., 2005, 127, 14257–1426;
- 5bS. Kumar, Chem. Soc. Rev. 2006, 35, 83–109.
- 6
- 6aR. J. Bushby, O. R. Lozman, L. A. Mason, N. Taylor, S. Kumar, Mol. Cryst. Liq. Cryst. 2004, 410, 171–181;
- 6bE. O. Arikainen, N. Boden, R. J. Bushby, O. R. Lozman, J. G. Vinter, A. Wood, Angew. Chem. Int. Ed. 2000, 39, 2333–2336;
10.1002/1521-3773(20000703)39:13<2333::AID-ANIE2333>3.0.CO;2-V CASPubMedWeb of Science®Google ScholarAngew. Chem. 2000, 112, 2423–2426.
- 7
- 7aC.-Y. Liu, A. Fechtenkötter, M. D. Watson, K. Müllen, A. J. Bard, Chem. Mater. 2003, 15, 124–130;
- 7bL. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend, J. D. MacKenzie, Science 2001, 293, 1119–1122;
- 7cC. Kübel, K. Eckhardt, V. Enkelmann, G. Wegner, K. Müllen, J. Mater. Chem. 2000, 10, 879–886.
- 8
- 8aD. Goldmann, D. Janietz, C. Schmidt, J. H. Wendorff, Angew. Chem. 2000, 112, 1922–1925;
10.1002/(SICI)1521-3757(20000515)112:10<1922::AID-ANGE1922>3.0.CO;2-7 Google ScholarAngew. Chem. Int. Ed. 2000, 39, 1851–1854;10.1002/(SICI)1521-3773(20000515)39:10<1851::AID-ANIE1851>3.0.CO;2-B CASPubMedWeb of Science®Google Scholar
- 8bS. J. Lee, J. Y. Chang, Tetrahedron Lett. 2003, 44, 7493–7497;
- 8cH. Meier, M. Lehmann, H. C. Holst, D. Schwöppe, Tetrahedron 2004, 60, 6881–6888.
- 9
- 9aJ . Luo, B. Zhao, J. Shao, K. A. Lim, H. S. O. Chan, C. Chi, J. Mater. Chem. 2009, 19, 8327–8334;
- 9bB. Gómez-Lor, B. Alonso, A. Omenat, J. L. Serrano, Chem. Commun. 2006, 5012–5014;
- 9cT. Rieth, S. Glang, D. Borchmann, H. Detert, Mol. Cryst. Liq. Cryst. 2015, 610, 89–99;
- 9dR. Cristiano, H. Gallardo, A. J. Bortoluzzi, I. H. Bechtold, C. E. M. Campos, R. L. Longo, Chem. Commun. 2008, 5134–5136.
- 10R. Cristiano, D. M. P. de Oliveira Santos, H. Gallardo, Liq. Cryst. 2005, 32, 7–14.
- 11A. Laurent, J. Prakt. Chem. 1845, 36, 1-10.
10.1002/prac.18450360101 Google Scholar
- 12
- 12aH. Detert, M. Lehmann, H. Meier, Materials 2010, 3, 3218–3330;
- 12bS. Kumar: The Chemistry of Discotic Liquid Crystals, CRC Press, Boca Raton, 2010;
- 12cS. Sergeyev, W. Pisula, Y. H. Geerts, Chem. Soc. Rev. 2007, 36, 1902–1929;
- 12dB. R. Kaafarani, Chem. Mater. 2011, 23, 378–396.
- 13S. Qu, Q. Lu, S. Wu, L. Wang, X. Liu, J. Mater. Chem. 2012, 22, 24605–24609.
- 14A.-F. Li, Y.-B. Ruan, Q.-Q. Jiang, W.-B. He, Y.-B. Jiang, Chem. Eur. J. 2010, 16, 5794–5802.
- 15S. Bhatia, M. Gupta, J. Chem. Pharm. Res. 2011, 3, 137–147.
- 16
- 16aV. N. Salimgareeva, R. M. Polevoi, V. A. Ponomareva, N. S. Sannikova, S. V. Kolesov, G. V. Leplyanin, Russ. J. Appl. Chem. 2003, 76, 1655–1658;
- 16bK. Kotwica, A. S. Kostyuchenko, P. Data, T. Marszalek, L. Skorka, T. Jaroch, S. Kacka, M. Zagorska, R. Nowakowski, A. P. Monkman, A. S. Fisyuk, W. Pisula, A. Pron, Chem. Eur. J. 2016, 22, 11795–11806.
- 17
- 17aM. Parra, S. Hernandez, J. Alderete, C. Zuniga, Liq. Cryst. 2000, 27, 995–1000;
- 17bL.-R. Zhu, F. Yao, J. Han, M.-L. Pang, J.-B. Meng, Liq. Cryst. 2009, 36, 209–213;
- 17cJ. Han, X. Chang, B. Cao, Q. Wang, Soft Mater. 2009, 7, 342–354.
- 18N. K. Chudgar, S. N. Shah, R. A. Vora, Mol. Cryst. Liq. Cryst. Inc. Nonlinear Op. 1989, 172, 51–56.
- 19
- 19aB. G. Kim, S. Kim, S. Y. Park, Tetrahedron Lett. 2001, 42, 2697–2699;
- 19bD. D. Prabhu, N. S. S. Kumar, A. P. Sivadas, S. Varghese, S. Das, J. Phys. Chem. B, 2012, 116, 13071–13080.
- 20R. Huisgen, J. Sauer, H. J. Sturm, J. H. Markgraf, Chem. Ber., 1960, 93, 2106–2124.
- 21O. Winkelmann, C. Naether, U. Luening, Org. Biomol. Chem. 2009, 7, 553–556.
- 22
- 22aO. Dimroth, G. Fester, Chem. Ber. 1910, 43, 2219–2223;
- 22bA. Hetzheim, in: Houben-Weyl, 4th ed., Vol E8c; E. Schaumann Ed., Thieme, Stuttgart 1954, p. 526.
- 23A.-A. S. El-Ahl, S. S. Elmorsy, A. H. Elbeheery, F. A. Amer, Tetrahedron Lett. 1997, 38, 1257–1260.
- 24R. Bartnik, R. Faure, K. Gebicki, Acta Crystallogr. Sect. C, 1999, 55, 1034–1037.
- 25Crystal structure: Mercury 3.3.; CCDC 1826069 contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif.
- 26
- 26aW. Pisula, Ž. Tomović, M. D. Watson, K. Müllen, J. Kussmann, C. Ochsenfeld, T. Metzroth, J. Gauss, J. Phys. Chem. B, 2007, 111, 7481–7487;
- 26bW. Pisula, M. Kastler, C. Yang, V. Enkelmann, K. Müllen, Chem. Asian J. 2007, 2, 51–56;
- 26cD. Wu, W. Pisula, V. Enkelmann, X. Feng, K. Müllen, J. Am. Chem. Soc. 2009, 131, 9620–9621.
- 27X. Feng, W. Pisula, M. Takase, X. Dou, V. Enkelmann, M. Wagner, N. Ding, K. Müllen, Chem. Mater. 2008, 20, 2872–2874.
- 28
- 28aK. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. Zuo, L. Zang, J. Am. Chem. Soc. 2005, 127, 10496–10497;
- 28bF. Carta, D. Vullo, A. Maresca, A. Scozzafava, C. T. Supuran, Bioorg. Med. Chem. 2013, 21, 1564–1569;
- 28cT. Rieth, N. Röder, M. Lehmann, H. Detert, Chem. Eur. J. 2018, 24, 93–96;
- 28dT. Rieth, T. Marszalek, W. Pisula, H. Detert, Chem. Eur. J. 2014, 20, 5000–5006;
- 28eS. Glang, T. Rieth, D. Borchmann, I. Fortunati, R. Signorini, H. Detert, Eur. J. Org. Chem. 2014, 3116–3126.
- 29J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940.