Binary Mixtures in Linear Convection Arrays
Corresponding Author
Pulak K. Ghosh
Department of Chemistry, Presidency University, Kolkata, 700073 India
Search for more papers by this authorYuxin Zhou
Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorYunyun Li
Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorCorresponding Author
Fabio Marchesoni
Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092 China
Dipartimento di Fisica, Università di Camerino, I-62032 Camerino
Search for more papers by this authorFranco Nori
Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198 Japan.
Physics Department, University of Michigan, Ann Arbor, Michigan, 48109-1040 USA.
Search for more papers by this authorCorresponding Author
Pulak K. Ghosh
Department of Chemistry, Presidency University, Kolkata, 700073 India
Search for more papers by this authorYuxin Zhou
Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorYunyun Li
Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092 China
Search for more papers by this authorCorresponding Author
Fabio Marchesoni
Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092 China
Dipartimento di Fisica, Università di Camerino, I-62032 Camerino
Search for more papers by this authorFranco Nori
Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198 Japan.
Physics Department, University of Michigan, Ann Arbor, Michigan, 48109-1040 USA.
Search for more papers by this authorGraphical Abstract
Binary mixtures of active-passive particles in convection arrays exhibit a conspicuous phase separation into two distinct colloidal fluids for strong self-propulsion of the active fraction. The passive fluid circulating inside the convection rolls and the active one accumulating in stagnation areas along the array walls. On the other hand, a little fraction of weak active particles exert a strong stirring action on a passive colloidal fluid.
Abstract
We numerically investigated the dynamics of a mixture of finite-size active and passive disks in a linear array of two-dimensional convection rolls. The interplay of advection and steric interactions produces a number of interesting effects, like the stirring of a passive colloidal fluid by a small fraction of slow active particles, or the separation of the mixture active and passive colloidal fractions by increasing the motility of the active one, which eventually clusters in stagnation areas along the array walls. These mechanisms are quantitatively characterized by studying the dependence of the diffusion constants of the active and passive particles on the parameters of the active mixture fraction.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
References
- 1H. K. Moffatt, G. M. Zaslavsky, P. Comte, M. Tabor Tabor (Eds.), Topological Aspects of the Dynamics of Fluids and Plasmas(Springer Netherlands, 1992).
- 2S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability(Oxford University Press, New York, 1967).
- 3S. Childress, Phys. Earth Planet. Inter. 1979, 20, 172–180.
- 4B. J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices(Cambridge University Press, 2010).
- 5X. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, H. P. Zhang, Proc. Natl. Acad. Sci. USA 2017, 114, 9564–9569.
- 6M. N. Rosenbluth, H. L. Berk, I. Doxas, W. Horton, Phys. Fluids 1987, 30, 2636.
- 7A. M. Soward, J. Fluid Mech. 1987, 180, 267–295.
- 8B. I. Shraiman, Phys. Rev. A 1987, 36, 261.
- 9W. Young, A. Pumir, Y. Pomeau, Phys. Fluids 1989, 1, 462.
- 10T. H. Solomon, J. P. Gollub, Phys. Fluids 1988, 31, 1372.
- 11T. H. Solomon, I. Mezić, Nature (London) 2003, 425, 376–380.
- 12Y.-N. Young, M. J. Shelley, Phys. Rev. Lett. 2007, 99, 058303.
- 13Q. Yin, Y. Li, F. Marchesoni, T. Debnath, P. K. Ghosh, Phys. Fluids 2020, 32, 092010.
- 14S. Jiang, S. Granick (Eds.), Janus particle synthesis, self-assembly and applications(RSC Publishing, Cambridge, 2012).
- 15A. Walther, A. H. E. Müller, Chem. Rev. 2013, 113, 5194–5261.
- 16M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, R. A. Simha, Rev. Mod. Phys. 2013, 85, 1143.
- 17J. Elgeti, R. G. Winkler, G. Gompper, Rep. Progr. Phys. 2015, 78, 056601.
- 18C. Torney, Z. Neufeld, Phys. Rev. Lett. 2007, 99, 078101.
- 19Y. Li, L. Li, F. Marchesoni, D. Debnath, P. K. Ghosh, Phys. Rev. Res. 2020, 2, 013250.
- 20P. K. Ghosh, F. Marchesoni, Y. Li, F. Nori, Phys. Chem. Chem. Phys. 2021, 23, 11944–11953.
- 21R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport phenomena(New York, John Wiley&Sons, 2007).
- 22Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, Nat. Mater. 2008, 7, 527.
- 23M. A. Boles, M. Engel, D. V. Talapin, Chem. Rev. 2016, 116, 11220.
- 24J. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 2012, 108, 168301.
- 25Y. Fily, M. C. Marchetti, Phys. Rev. Lett. 2012, 108, 235702.
- 26G. S. Redner, M. F. Hagan, A. Baskaran, Phys. Rev. Lett. 2013, 110, 055701.
- 27Y. Li, Y. Zhou, F. Marchesoni, P. K. Ghosh, Soft Matter 2022, 18, 4778–4785.
- 28P. Tabeling, Phys. Rep. 2002, 362, 1.
- 29A. Zoettl, H. Stark, Phys. Rev. Lett. 2012, 108, 218104.
- 30R. Rusconi, J. S. Guasto, R. Stocker, Nat. Phys. 2014, 10, 212–217.
- 31K. Qi, H. Annepu, G. Gompper, R. G. Winkler, Phys. Rev. Res. 2020, 2, 033275.
- 32H. Stommel, J. Mar. Res. 1949, 8, 24–29.
- 33M. R. Maxey, Phys. Fluids 1987, 30, 1915.
- 34J. D. Weeks, D. Chandler, H. C. Andersen, J. Chem. Phys. 1971, 54, 5237.
- 35P. K. Ghosh, Y. Li, G. Marchegiani, F. Marchesoni, J. Chem. Phys. 2015, 143, 211101.
- 36D. Debnath, P. K. Ghosh, Y Li, F Marchesoni, B Li, Soft Matter 2016, 12, 2017–2024.
- 37A. Zöttl, H. Stark, J. Phys. Condens. Matter 2016, 28, 253001.
- 38P. K. Ghosh, V. R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 2013, 110, 268301.
- 39P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations(Springer, Berlin, 1992).
- 40Y. Li, Q. Yin, F. Marchesoni, T. Debnath, P. K. Ghosh, Phys. Rev. E 2021, 103, L030106.
- 41Y. Li, P. K. Ghosh, F. Marchesoni, Phys. Rev. Res. 2021, 3, L032065.
- 42M. E. Cates, J. Tailleur, Annu. Rev. Condens. Matter. Phys. 2015, 6, 219–244.
- 43T. Kolbab, D. Klotsa, Soft Matte r 2020, 16, 1967–1978.
- 44J. Stürmer, M. Seyrich, H. Stark, J. Chem. Phys. 2019, 150, 214901.
- 45J. Agudo-Canalejo, R. Golestanian, Phys. Rev. Lett. 2019, 123, 018101.
- 46P. Dolai, A. Simha, S. Mishra, Soft Matter 2018, 14, 6137–6145.
- 47W. Yang, V. R. Misko, F. Marchesoni, F. Nori, J. Phys. Condens. Matter 2018, 30, 264004.
- 48X. Yang, M. L. Manning, M. C. Marchetti, Soft Matter 2014, 10, 6477–6484.
- 49J. Stenhammar, R. Wittkowski, D. Marenduzzo, M. E. Cates, Phys. Rev. Lett. 2015, 114, 018301.
- 50A. Wysocki, R. G. Winkler, G. Gompper, New J. Phys. 2016, 18, 123030.
- 51K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, R. E. Goldstein, Phys. Rev. Lett. 2009, 103, 198103.
- 52D. Debnath, P. K. Ghosh, V. R. Misko, Y. Li, F. Marchesoni, F. Nori, Nanoscale 2020, 12, 9717–9726.
- 53J. Elgeti, G. Gompper, EPL 2013, 101, 48003.
- 54Y. Fily, Y. Kafri, A. P. Solon, J. Tailleur, A. Turner, J. Phys. A 2018, 51, 044003.
10.1088/1751-8121/aa99b6 Google Scholar
- 55S. Das, G. Gompper, R. G. Winkler, Sci. Rep. 2019, 9, 6608.
- 56R. Matas-Navarro, R. Golestanian, T. B. Liverpool, S. M. Fielding, Phys. Rev. E 2014, 90, 032304.
- 57M. Theers, E. Westphal, K. Qi, R. G. Winkler, G. Gompper, Soft Matter 2018, 14, 8590–8603.
- 58N. Korin, M. Kanapathipillai, B. D. Matthews, M. Crescente, A. Brill, T. Mammoto, K. Ghosh, S. Jurek, S. A. Bencherif, D. Bhatta, A. U. Coskun, C. L. Feldman, D. D. Wagner, D. E. Ingber, Science 2012, 337, 738–42.
- 59M. J. Gomez-Garcia, A. L. Doiron, R. R. M. Steele, H. I. Labouta, B. Vafadar, R. D. Shepherd, I. D. Gates, D. T. Cramb, S. J. Childs, K. D. Rinker, Nanoscale 2018, 10, 15249–15261.
- 60M. F. Attia, N. Anton, J. Wallyn, Z. Omran, T. F. Vandamme, J. Pharm. Pharmacol. 2019, 71, 1185–1198.