Inhibition of the Germination of Root Parasitic Plants by Zeolitic Imidazolate Framework-8
Nouf Al Saleh
Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Bioengineering Institute, Health Sector, King Abdul Aziz City for Science and Technology (KACST), Riyadh, 11442 Saudi Arabia
N. S and L. O. A contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorLukman O. Alimi
Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
N. S and L. O. A contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Validation (lead)
Search for more papers by this authorMuhammad Jamil
The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Methodology (supporting), Validation (supporting)
Search for more papers by this authorSomayah Qutub
Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Methodology (supporting)
Search for more papers by this authorLamis Berqdar
The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Resources (supporting)
Search for more papers by this authorCorresponding Author
Salim Al-Babili
The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Resources (supporting)
Search for more papers by this authorCorresponding Author
Niveen M. Khashab
Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Conceptualization (supporting), Funding acquisition (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorNouf Al Saleh
Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Bioengineering Institute, Health Sector, King Abdul Aziz City for Science and Technology (KACST), Riyadh, 11442 Saudi Arabia
N. S and L. O. A contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal)
Search for more papers by this authorLukman O. Alimi
Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
N. S and L. O. A contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Validation (lead)
Search for more papers by this authorMuhammad Jamil
The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Methodology (supporting), Validation (supporting)
Search for more papers by this authorSomayah Qutub
Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Methodology (supporting)
Search for more papers by this authorLamis Berqdar
The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Resources (supporting)
Search for more papers by this authorCorresponding Author
Salim Al-Babili
The Bio Actives Lab. Center for Desert Agriculture, Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Resources (supporting)
Search for more papers by this authorCorresponding Author
Niveen M. Khashab
Smart Hybrid Materials Laboratory (SHMs), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Contribution: Conceptualization (supporting), Funding acquisition (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
We have demonstrated that the application of Am-ZIF-8 can significantly control the germination of Striga seeds to boost cereal crops production most especially in the Middle East and Africa. From our results, we then hypothesized that the excellent inhibition performance shown by Am-ZIF-8 is due to the formation of unsaturated Zn−N coordination number during amorphization.
Abstract
Crystalline ZIF-8 (C-ZIF-8) and amorphous ZIF-8 (Am-ZIF-8) were prepared and investigated to control the germination of Striga hermonthica, a root parasitic plant, which threatens cereal crops production particularly in sub-Saharan Africa. We have demonstrated that Am-ZIF-8 shows a better performance than C-ZIF-8 in inhibiting Striga seeds germination. This efficient performance of Am-ZIF-8 materials can be attributed to the incomplete deprotonation of 2 methylimidazole (2MIM) during amorphization, leading to the presence of unsaturated Zn−N coordination with the uncoordinated -NH groups available to undergo hydrogen bonding with the strigolactone analog GR24 forming a more stable Am-ZIF-8⋅⋅⋅GR24 hydrogen bonded network. We further established that application of ZIF-8 materials generally has no adverse effects on the growth and quality of rice crops.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cplu202400457-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Funabashi, npj Sci Food 2018, 2, 16;
- 1bJ. Molina, M. Sikora, N. Garud, J. M. Flowers, S. Rubinstein, A. Reynolds, P. Huang, S. Jackson, B. A. Schaal, C. D. Bustamante, A. R. Boyko, M. D. Purugganan, Proc. Natl. Acad. Sci. U. S.A 2011, 108, 8351–8356.
- 2O. O. Adebayo, I. Omodele, Int. J. Agric. Pol. Res. 2015, 3, 233–245.
- 3World production volume of milled rice from 2008/2009 to 2023/24 (in million metric tons) [Graph]. IGC. (January 12, 2024). In Statista. Retrieved October 29, 2024, from https://www.statista.com/statistics/271972/world-husked-rice-production-volume-since-2008/.
- 4
- 4aS. J. Hearne, Pest Manag. Sci. 2009, 65, 603–614;
- 4bC. Parker, C. R. Riches, Parasitic Weeds of the World: Biology and Control. CAB International, Wallingford, UK 1993, 332;
- 4cG. Gbehounou, E. Adango, Crop Prot. 2003, 22, 395–404;
- 4dUSDA, NRCS n.d. “Striga”. The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team.
- 5
- 5a\ Witchweed: A Parasitic Pest, Animal and Plant Health Inspection Service, Plant Protection and Quarantine: United States Department of Agriculture, 2003, https://www.doc-developpement-durable.org/file/Culture/Agriculture/pestes-vegetales/Witchweed A%20Parasitic%20Pest.pdf;
- 5bF. F. Bebawi, R. E. Eplee, R. S. Norris, Weed Sci. 1984, 32, 202–205.
10.1017/S0043174500058811 Google Scholar
- 6
- 6aV. M. Manyong, S. J. Nindi, A. D. Alene, G. D. Odhiambo, G. Omanya, H. D. Mignouna, M. Bokanga, Farmer Perceptions of Imazapyr- Resistant (IR) Maize Technology on the Control of Striga in Western Kenya, African Agricultural Technology Foundation (www.aatfafrica.org), Nairobi, Kenya 2008;
- 6bI. Kureh, A. Y. Kamara, B. D. Tarfa, J. Agric. Rural Devel Trop Subtrop. 2006, 107, 41–54;
- 6cO. Samake, T. J. Stomph, M. J. Kropff, E. M. A. Smaling, Plant Soil 2006, 286, 245–257;
- 6dE. Gacheru, M. R. Rao, Int. J. Pest Manag. 2005, 51, 91–100.
- 7
- 7aZ. R. Khan, C. A. O. Midega, D. M. Amudavi, A. Hassanali, J. A. Pickett, Field Crop Res. 2008, 106, 224–233;
- 7bN. A. Gworgwor, Agron. Sustain. Dev. 2007, 27, 89–94;
- 7cZ. R. Khan, C. A. O. Midega, A. Hassanali, J. A. Pickett, L. J. Wadhams, Crop Sci. 2007, 47, 730–736;
- 7dF. Reda, J. A. C. Verkleij,Integrating new technologies for striga control, 2007, 229–239.
- 8
- 8aA. van Ast, L. Bastiaans, S. Katile, Crop Prot. 2005, 24, 1023–1034;
- 8bG. Gbehounou, E. Adango, J. C. Hinvi, R. Nonfon, Crop Prot. 2004, 23, 379–386;
- 8cA. Oswald, J. K. Ransom, J. Kroschel, J. Sauerborn, Weed Sci. 2001, 49, 346–353;
- 8dG. J. vanDelft, J. D. Graves, A. H. Fitter, A. van Ast, Int. J. Pest Manag. 2000, 4, 251–256
10.1080/09670870050206019 Google Scholar
- 9
- 9aJ. Sauerborn, B. Kranz, H. Mercer-Qviarshie, Applied Soil Ecology 2003, 23, 181–186;
- 9bM. O. Ahonsi, D. K. Berner, A. M. Emechebe, S. T. Lagoke, Soil Biol. Biochem. 2002, 34, 1675–1681;
- 9cF. A. Showemimo, C. A. Kimbeng, S. O. Alabi, Crop Prot. 2002, 21, 867–870.
- 10
- 10aH. De Groote, L. Wangare, F. Kanampiu, M. Odendo, A. Diallo, H. Karaya, D. Friesen, Agric. Syst. 2008, 97, 83–94;
- 10bH. De Groote, Integrating New Technologies for Striga Control, 2007, 265–280. ;
- 10cM. O. Ahonsi, D. K. Berner, A. M. Emechebe, S. T. Lagoke, Agric. Ecos. Environ. 2004, 104, 453–463;
- 10dF. K. Kanampiu, V. Kabambe, C. Massawe, L. Jasi, D. Friesen, J. K. Ransom, Crop Prot. 2003, 22, 697–706.
- 11
- 11aJ. Rodenburg, L. Bastiaans, M. J. Kropff, A. van Ast, Weed Research. 2006, 46, 251–263;
- 11bJ. G. Kling, J. Fajemisin, B. Badu-Apraku, A. Diallo, A. Menkir, A. Melake-Berhan, Striga resistance breeding in maize. In Breeding for Striga resistance in Cereals: proceedings of a workshop held at IITA, Ibadan, Nigeria, 16–20 August 1999, Weikersheim, Germany: Margraf Verlag, 2000, 103–118, https://hdl.handle.net/10568/109283;
- 11cI. O. Amusan, P. J. Rich, A. Menkir, T. Housley, G. Ejeta, New Phytol. 2008, 178, 157–166;
- 11dA. L. Gurney, D. Grimanelli, F. Kanampiu, D. Hoisington, J. D. Scholes, M. C. Press, New Phytol. 2003, 160, 557–568;
- 11eA. C. Franke, J. Ellis-Jones, G. Tarawali, S. Schulz, M. A. Hussaini, I. Kureh, R. White, D. Chikoye, B. Douthwaite, B. D. Oyewole, A. S. Olanrewaju, Crop Prot. 2006, 25, 868–878;
- 11fA. Y. Kamara, A. Menkir, D. Chikoye, L. O. Omoigui, F. Ekeleme, Maydica 2007, 52, 415–423.
- 12
- 12aP. R. Westerman, A. van Ast, T. J. Stomph, W. van der Werf, Crop Prot. 2007, 26, 219–227;
- 12bA. Menkir, J. G. Kling, B. Badu-Apraku, O. Ibikunle, Crop Sci. 2006, 46, 1007–1009;
- 12cA. L. Gurney, J. Slate, M. C. Press, J. D. Scholes, New Phytol. 2005, 169, 199–208;
10.1111/j.1469-8137.2005.01560.x Google Scholar
- 12dP. J. Rich, C. Grenier, G. Ejeta, Crop Sci. 2004, 44, 2221–2229;
- 12eJ. P. Wilson, D. E. Hess, W. W. Hanna, K. A. Kumar, S. C. Gupta, Phytopathology 2003, 93, S90.
- 13
- 13aE. Zahran, E. Kohlschmid, J. Sauerborn, A. A. Abbasher, D. Muller-Stover, J. Plant Dis. Prot. 2008, S21, 467–471;
- 13bB. Schaub, P. Marley, A. Elzein, J. Kroschel, J. Plant Dis. Protect. Spec. Iss. 2006, 20, 691–699;
- 13cD. Yonli, H. Traore, D. E. Hess, P. Sankara, P. Sereme, Weed Res. 2006, 46, 73–81;
- 13dP. S. Marley, J. A. Y. Shebayan, BioControl 2005, 50, 389–399.
- 14
- 14aH. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276–279;
- 14bS. K. Alsaiari, S. Patil, M. Alyami, K. O. Alamoudi, F. A. Aleisa, J. S. Merzaban, M. Li, N. M. Khashab, J. Am. Chem. Soc. 2018, 140, 143–146;
- 14cS. Rojas, A. Rodríguez-Diéguez, P. Horcajada, ACS Appl. Mater. Interfaces 2022, 14, 16983–17007;
- 14dQ. Song, S. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb, E. Sivaniah, Energy Environ. Sci. 2012, 5, 8359–8369;
- 14eH. Chen, J. Wang, J. Hazard Mater. 2021, 403, 123697;
- 14fJ. Yuan, Q. Li, J. Shen, K. Huang, G. Liu, J. Zhao, J. Duan, W. Jin, Asia-Pac. J. Chem. Eng. 2017, 12, 110–120;
- 14gJ. Liu, W. H. Xiong, L. Y. Ye, W. S. Zhang, H. Yang, J. Agric. Food Chem. 2020, 68, 5572–5578;
- 14hS. Rojas, A. Rodríguez-Diéguez, P. Horcajada, ACS Appl. Mater. Interfaces 2022, 14, 16983–17007;
- 14iY. Liu, Y. Lin, W. Wang, K. Min, W. Ling, W. Ma, W. Zhang, X. Hou, L. Wei, Q. Liu, G. Jiang, Environ. Sci. Technol. 2024, 58, 8009–8019;
- 14jM. Anstoetz, N. Sharma, M. Clark, L. H. Yee, J. Mater. Sci. 2016, 51, 9239–9252;
- 14kS. S. Sankar, K. Karthick, K. Sangeetha, A. Karmakar, S. Kundu, ACS Omega 2020, 5, 57–67.
- 15W. S. Baslyman, O. Alahmed, S. Chand, S. Qutub, N. M. Khashab, Angew. Chem. Int. Ed. 2023, 62, e202302840.
- 16
- 16aK. M. Aguliar Perez, Y. Alagoz, B. Maatouk, J. Y. Wang, L. Berqdar, S. Qutub, M. Jamil, S. AlNasser, N. BinSaleh, P. Lin, L. Almarwaey, T. Asami, S. Al-Babili, N. M. Khashab, Nano Lett. 2023, 23, 4732–4740;
- 16bJ. Y. Wang, M. Jamil, P.-Y. Lin, T. Ota, V. Fiorilli, M. Novero, R. A. Zarban, B. A. Kountche, I. Takahashi, C. Martınez, L. Lanfranco, P. Bonfante, A. R. de Lera, T. Asami, S. Al-Babili, Mol. Plant. 2020, 13, 1654–1661.
- 17P. Yu, X. Zheng, L. O. Alimi, S. Al-Babili, N. M. Khashab, ACS Appl. Mater. Interfaces 2024, 16, 18245–18251.
- 18
- 18aX. Wu, H. Yue, Y. Zhang, X. Gao, X. Li, L. Wang, Y. Cao, M. Hou, H. An, L. Zhang, S. Li, J. Ma, H. Lin, Y. Fu, H. Gu, W. Lou, W. Wei, R. N. Zare, J. Ge, Nat. Commun. 2019, 10, 5165;
- 18bA. F. Ogata, A. M. Rakowski, B. P. Carpenter, D. A. Fishman, J. G. Merham, P. J. Hurst, J. P. Patterson, J. Am. Chem. Soc. 2020, 142, 1433–1442;
- 18cW. Liang, R. Ricco, N. K. Maddigan, R. P. Dickinson, H. Xu, Q. Li, C. J. Sumby, S. G. Bell, P. Falcaro, C. J. Doonan, Chem. Mater. 2018, 30, 1069–1077;
- 18dF. Carraro, J. D. Williams, M. Linares-Moreau, C. Parise, W. Liang, H. Amenitsch, C. Doonan, C. O. Kappe, P. Falcaro, Angew. Chem. Int. Ed. 2020, 132, 8200–8204;
10.1002/ange.202000678 Google Scholar
- 18eE. F. Baxter, T. D. Bennett, C. Mellot-Draznieks, C. Gervais, F. Blanc, A. K. Cheetham, Phys. Chem. Chem. Phys. 2015, 17, 25191–25196;
- 18fY. Hu, Z. Liu, J. Xu, Y. Huang, Y. Song, J. Am. Chem. Soc. 2013, 135, 9287–9290.
- 19
- 19aS. Tanaka, R. Miyashita, ACS Omega 2017, 2, 6437–6445;
- 19bB. Jin, S. Wang, D. Boglaienko, Z. Zhang, Q. Zhao, X. Ma, X. Zhang, J. J. De Yoreo, J. Cryst. Growth 2023, 603, 126989;
- 19cY. Zhang, Y. Jia, M. Li, L. Hou, Sci. Rep. 2018, 8, 9597.
- 20
- 20aM. Jamil, J. Y. Wang, D. Yonli, T. Ota, L. Berqdar, H. Traore, O. Margueritte, B. Zwanenburg, T. Asami, S. Al-Babili, Plants 2022, 11, 1045;
- 20bL. J. Bromhead, J. Smith, C. S. P. Mcerlean, Aust. J. Chem. 2015, 68, 1221–1227;
- 20cE. M. Mangnus, F. J. Dommerholt, R. L. P. De Jong, B. Zwanenburg, J. Agric. Food Chem. 1992, 40, 1230–1235.
- 21D. Manoj, S. Rajendran, T. K. A. Hoang, M. Soto-Moscoso, Chemosphere 2022, 300, 134516.
- 22J. Braguy, M. Ramazanova, S. Giancola, M. Jamil, B. A. Kountche, R. Zarban, A. Felemban, J. Y. Wang, P. Y. Lin, I. Haider, M. Zurbriggen, B. Ghanem, S. Al-Babili, Plant Physiol. 2021, 186, 1632–1644.
- 23R. A. Zarban, U. F. S. Hameed, M. Jamil, T. Ota, J. Y. Wang, S. T. Arold, T. Asami, S. Al-Babili, Plant Physiol. 2022, 188, 1369–1384.