Iridium-Coordinated Histidyl Bolaamphiphile Self-Assemblies as Heterogeneous Catalysts for Water Oxidation
Changjoon Keum
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Korea
Search for more papers by this authorCorresponding Author
Dr. Sang-Yup Lee
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Korea
Search for more papers by this authorChangjoon Keum
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Korea
Search for more papers by this authorCorresponding Author
Dr. Sang-Yup Lee
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Korea
Search for more papers by this authorGraphical Abstract
Abstract
Catalysts that can promote oxygen evolution from water are necessary for green energy production. In this study, colloidal heterogeneous catalysts for oxygen evolution were prepared by coordination of Ir species to self-assemblies of histidyl bolaamphiphiles. When dissolved in water, the histidyl bolaamphiphiles self-assembled to form particulate structures with the exposure of densely packed histidine imidazoles on their surface. Subsequent coordination of the Ir species to the bolaamphiphile assembly gave rise to catalytic activity toward the oxygen evolution reaction. The oxygen evolution was examined by using the catalytic assemblies in the presence of a sacrificial oxidant, cerium ammonium nitrate. The Ir-coordinated assemblies showed a turnover frequency of 13 min−1, which was comparable to those previously reported for molecular water oxidation catalysts. The catalytic activity increased with increasing histidine imidazole/Ir molar ratio, which suggested that multiple coordination of Ir to imidazoles facilitated the formation of active Ir intermediates. This study demonstrates the feasibility of constructing catalytically active interfaces from colloidal bolaamphiphile assemblies with biochemical ligands.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201800461-sup-0001-misc_information.pdf660.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. D. Blakemore, R. H. Crabtree, G. W. Brudvig, Chem. Rev. 2015, 115, 12974–13005.
- 2N. C. Pramanik, S. Bhattacharya, Transition Met. Chem. 1997, 22, 524–526.
- 3D. J. Wasylenko, C. Ganesamoorthy, B. D. Koivisto, M. A. Henderson, C. P. Berlinguette, Inorg. Chem. 2010, 49, 2202–2209.
- 4J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730–8731.
- 5L. Duan, A. Fischer, Y. Xu, L. Sun, J. Am. Chem. Soc. 2009, 131, 10397–10399.
- 6A. Savini, G. Bellachioma, G. Ciancaleoni, C. Zuccaccia, D. Zuccaccia, A. Macchioni, Chem. Commun. 2010, 46, 9218–9219.
- 7W. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am. Chem. Soc. 2010, 132, 10990–10991.
- 8S. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498–502.
- 9N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard, J. Am. Chem. Soc. 2008, 130, 210–217.
- 10J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2010, 132, 16017–16029.
- 11R. Lalrempuia, N. D. McDaniel, H. Muller-Bunz, S. Bernhard, M. Albrecht, Angew. Chem. Int. Ed. 2010, 49, 9765–9768;
Angew. Chem. 2010, 122, 9959–9962.
10.1002/ange.201005260 Google Scholar
- 12A. Bucci, A. Savini, L. Rocchigiani, C. Zuccaccia, S. Rizzato, A. Albinati, A. Llobet, A. Macchioni, Organometallics 2012, 31, 8071–8074.
- 13P. B. Brewster, J. D. Blakemore, N. D. Schley, C. D. Incarvito, N. Hazari, G. W. Brudvig, R. H. Crabtree, Organometallics 2011, 30, 965–973.
- 14D. G. H. Hetterscheid, J. N. H. Reek, Chem. Commun. 2011, 47, 2712–2714.
- 15A. Bucci, G. M. Rodriguez, G. Bellachioma, C. Zuccaccia, A. Poater, L. Cavallo, A. Macchioni, ACS Catal. 2016, 6, 4559–4563.
- 16I. Corbucci, A. Petronilho, H. Müller-Bunz, L. Rocchigiani, M. Albrecht, A. Macchioni, ACS Catal. 2015, 5, 2714–2718.
- 17Q. Y. He, H. T. Shi, X. Wei, W. B. Yu, J. Org. Chem. 2016, 81, 1–6.
- 18D. B. Grotjahn, D. B. Brown, J. K. Martin, D. C. Marelius, M. C. Abadjian, H. N. Tran, G. Kalyuzhny, K. S. Vecchio, Z. G. Specht, S. A. Cortes-Llamas, V. Miranda-Soto, C. van Niekerk, C. E. Moore, A. L. Rheingold, J. Am. Chem. Soc. 2011, 133, 19024–19027.
- 19U. Hintermair, S. W. Sheehan, A. R. Parent, D. H. Ess, D. T. Richens, P. H. Vaccaro, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2013, 135, 10837–10851.
- 20A. J. Ingram, A. B. Wolk, C. Flender, J. Zhang, C. J. Johnson, U. Hintermair, R. H. Crabtree, M. A. Johnson, R. N. Zare, Inorg. Chem. 2014, 53, 423–433.
- 21A. Savini, G. Bellachioma, S. Bolaño, L. Rocchigiani, C. Zuccaccia, D. Zuccaccia, A. Macchioni, ChemSusChem 2012, 5, 1415–1419.
- 22P. Mura, A. Casini, G. Marcon, L. Messori, Inorg. Chim. Acta 2001, 312, 74–80.
- 23M. Dürrenberger, T. R. Ward, Curr. Opin. Chem. Biol. 2014, 19, 99–106.
- 24A. Savini, A. Bucci, G. Bellachioma, S. Giancola, F. Palomba, L. Rocchigiani, A. Rossi, M. Suriani, C. Zuccaccia, A. Macchioni, J. Organomet. Chem. 2014, 771, 24–32.
- 25T. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev. 2005, 105, 1401–1443.
- 26M. Masuda, T. Shimizu, Langmuir 2004, 20, 5969–5977.
- 27Q. Meng, Y. Kou, X. Ma, Y. Liang, L. Guo, C. Ni, K. Liu, Langmuir 2012, 28, 5017–5022.
- 28J. Kwak, S. S. Nam, J. Cho, E. Sim, S.-Y. Lee, Phys. Chem. Chem. Phys. 2017, 19, 10274–10281.
- 29M.-C. Kim, S.-Y. Lee, Chem. Eur. J. 2014, 20, 17019–17024.
- 30M.-C. Kim, S.-Y. Lee, ChemCatChem 2015, 7, 698–704.
- 31C. Keum, M.-C. Kim, S.-Y. Lee, J. Mol. Catal. A 2015, 408, 69–74.
- 32X. Liu, Y. Maegawa, Y. Goto, K. Hara, S. Inagaki, Angew. Chem. Int. Ed. 2016, 55, 7943–7947;
Angew. Chem. 2016, 128, 8075–8079.
10.1002/ange.201601453 Google Scholar
- 33S. E. Livingstone, The Chemistry of Ruthenium, Rhodium, Palladium, Osmium, Iridium and Platinum in Comprehensive Inorganic Chemistry, Vol. 25, Pergamon, Oxford, 1975.
- 34M. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304–7397.
- 35T. Shimizu, H. Minamikawa, M. Kogiso, M. Aoyagi, N. Kameta, W. Ding, M. Masuda, Polym. J. 2014, 46, 831–858.
- 36B. Xerri, H. Petitjean, F. Dupeyrat, J.-P. Flament, A. Lorphelin, C. Vidaud, C. Berthomieu, D. Berthomieu, Eur. J. Inorg. Chem. 2014, 4650–4659.
- 37Y. El Khoury, P. J. Hellwig, J. Biol. Inorg. Chem. 2009, 14, 23–34.
- 38Y. M. López-De Jesus, A. Vincente, G. Lafaye, P. Marcecot, C. T. Williams, J. Phys. Chem. C 2008, 112, 13837–13845.
- 39A. A. El-Awady, E. J. Bounsall, C. S. Garner, Inorg. Chem. 1967, 6, 79–86.
- 40G. L. Miessler, D. A. Tarr, Inorganic Chemistry, 4th ed., Pearson, Prentice Hall, NJ, 2011.
- 41U. Hintermair, S. M. Hashmi, M. Elimelech, R. H. Crabtree, J. Am. Chem. Soc. 2012, 134, 9785–9795.
- 42H. Huo, C. Wang, K. Harms, E. Meggers, J. Am. Chem. Soc. 2015, 137, 9551–9554.
- 43H. Sigel, D. B. McCormick, J. Am. Chem. Soc. 1971, 93, 2041–2044.
- 44P. Deschamps, P. P. Kulkarni, B. Sarkar, Inorg. Chem. 2004, 43, 3338–3340.
- 45D. W. Shaffer, Y. Xie, D. J. Szalda, J. J. Concepcion, J. Am. Chem. Soc. 2017, 139, 15347–15355.
- 46R. Matheu, M. Z. Ertem, J. Bene tBuchholz, E. Coronado, V. S. Batista, X. Sala, A. Llobet, J. Am. Chem. Soc. 2015, 137, 10786–10795.
- 47D. Wang, G. Ghirlanda, J. P. Allen, J. Am. Chem. Soc. 2014, 136, 10198–10201.
- 48M. T. Zhang, Z. Chen, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 2048–2051.
- 49V. M. Krishnamurthy, G. K. Kaufman, A. R. Urbach, I. Gitlin, K. L. Gudiksen, D. B. Weibel, G. M. Whitesides, Chem. Rev. 2008, 108, 946–1051.
- 50M. Bräuer, J. L. Perez-Lustres, J. Weston, E. Anders, Inorg. Chem. 2002, 41, 1454–1463.
- 51A. Savini, P. Belanzoni, G. Bellachioma, C. Zuccaccia, D. Zuccaccia, A. Macchioni, Green Chem. 2011, 13, 3360–3374.
- 52N. Marquet, F. Gärtner, S. Losse, M.-M. Pohl, H. Junge, M. Beller, ChemSusChem 2011, 4, 1598–1600.
- 53M. Li, K. Takada, J. I. Goldsmith, S. Bernhard, Inorg. Chem. 2016, 55, 518–526.
- 54G. Menendez Rodriguez, A. Bucci, R. Hutchinson, G. Bellachioma, C. Zuccaccia, S. Giovagnoli, H. Idriss, A. Macchioni, ACS Energy Lett. 2017, 2, 105–110.
- 55A. R. Parent, R. H. Crabtree, G. W. Brudvig, Chem. Soc. Rev. 2013, 42, 2247–2252.
- 56D. Hong, M. Murakami, Y. Yamada, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 5708–5716.
- 57Ocean Optics: Comments on “Technical note—How Does an Ocean Optics Oxygen Sensor Work?”, https://oceanoptics.com/measurementtechnique/oxygen-sensing/ (accessed Nov. 10, 2017).