Biogenic Manganese–Calcium Oxides on the Cell Walls of the Algae Chara Corallina: Elemental Composition, Atomic Structure, and Water-Oxidation Catalysis† ‡
Andreas Schöler
Freie Universität Berlin, FB Physik, Arnimallee 14, 14195 Berlin, Germany, http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-dau/
Search for more papers by this authorIvelina Zaharieva
Freie Universität Berlin, FB Physik, Arnimallee 14, 14195 Berlin, Germany, http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-dau/
Search for more papers by this authorSebastian Zimmermann
Christian-Albrechts-Universität zu Kiel, Institut für Anorganische Chemie, Max-Eyth-Str. 2, 24118 Kiel, Germany
Search for more papers by this authorMathias Wiechen
Christian-Albrechts-Universität zu Kiel, Institut für Anorganische Chemie, Max-Eyth-Str. 2, 24118 Kiel, Germany
Search for more papers by this authorAnne-Marie Manke
Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstraße 21, 79104 Freiburg, Germany, http://www.bioanorganik.uni-freiburg.de/
Search for more papers by this authorPhilipp Kurz
Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstraße 21, 79104 Freiburg, Germany, http://www.bioanorganik.uni-freiburg.de/
Search for more papers by this authorChristoph Plieth
Christian-Albrechts-Universität zu Kiel, Zentrum für Biochemie und Molekularbiologie, Am Botanischen Garten 9, 24118 Kiel, Germany, http://www.zbm.uni-kiel.de/agplieth
Search for more papers by this authorHolger Dau
Freie Universität Berlin, FB Physik, Arnimallee 14, 14195 Berlin, Germany, http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-dau/
Search for more papers by this authorAndreas Schöler
Freie Universität Berlin, FB Physik, Arnimallee 14, 14195 Berlin, Germany, http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-dau/
Search for more papers by this authorIvelina Zaharieva
Freie Universität Berlin, FB Physik, Arnimallee 14, 14195 Berlin, Germany, http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-dau/
Search for more papers by this authorSebastian Zimmermann
Christian-Albrechts-Universität zu Kiel, Institut für Anorganische Chemie, Max-Eyth-Str. 2, 24118 Kiel, Germany
Search for more papers by this authorMathias Wiechen
Christian-Albrechts-Universität zu Kiel, Institut für Anorganische Chemie, Max-Eyth-Str. 2, 24118 Kiel, Germany
Search for more papers by this authorAnne-Marie Manke
Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstraße 21, 79104 Freiburg, Germany, http://www.bioanorganik.uni-freiburg.de/
Search for more papers by this authorPhilipp Kurz
Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstraße 21, 79104 Freiburg, Germany, http://www.bioanorganik.uni-freiburg.de/
Search for more papers by this authorChristoph Plieth
Christian-Albrechts-Universität zu Kiel, Zentrum für Biochemie und Molekularbiologie, Am Botanischen Garten 9, 24118 Kiel, Germany, http://www.zbm.uni-kiel.de/agplieth
Search for more papers by this authorHolger Dau
Freie Universität Berlin, FB Physik, Arnimallee 14, 14195 Berlin, Germany, http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-dau/
Search for more papers by this authorDedicated to Professor Ulf-Peter Hansen (University of Kiel) on the occasion of his 75th birthday
For his pioneering work in advanced electrophysiology and on light effects in Chara corallina and other organisms.
Graphical Abstract
The algae Chara corallina produce brown deposits on their cell walls when grown in manganese-rich media. By an unusual combination of normal and space-resolved X-ray absorption spectroscopy, it could be shown that the material belongs to the birnessite family of layered MnCa oxides. Furthermore, it was observed that the deposits act as biogenic water-oxidation catalysts.
Abstract
Chara corallina freshwater algae produce brown deposits of manganese oxides on their cell wall surfaces when growing in manganese-rich media. We report on the formation, topology, composition, atomic structure, and catalytic activities of these biogenic manganese oxides (BMOs). The deposits are volcano shaped and exhibit 3–5 μm craters in their centers. Microfocus X-ray irradiation and detection of characteristic X-ray fluorescence lines allowed elemental mapping at 5 μm spatial resolution and the identification of the volcano-shaped deposits as a Mn–Ca oxide. X-ray absorption spectroscopy (XAS) revealed a high-valent MnIII/IV oxide. The structural analysis involved XAS spectra collected for a single volcano at room temperature and for single cells at 20 K. On the basis of the XAS data, the oxides were identified as members of the birnessite family of layered manganese oxides containing di-μ-oxido-bridged MnIII/IVO6 octahedra as central building units. The deposits share structural motifs with synthetic water-oxidizing Mn–Ca oxides and with the Mn4Ca complex of photosystem II, the biological water-oxidation catalyst. Model reactions demonstrate low, but clearly detectable, activity of the manganese deposits for water-oxidation catalysis. The biogenic manganese oxides on the cell walls of Chara corallina thus represent an intriguing object to study how manganese-based catalysts for water oxidation are formed in a biological environment. The formation of BMOs in relation to cellular ion transport and the possibility of BMOs to fulfill a detoxification function in plants were also examined.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ejic_201300697_sm_miscellaneous_information.pdf1 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a L. Graham , J. Plant Res. 1996 , 109 , 241 –251 .
- 1b L. A. Lewis , R. M. McCourt , Am. J. Bot. 2004 , 91 , 1535 –1556 .
- 1c W. Migula , Kryptogamen-Flora (Ed.: L. Rabenhorst) , Verlag von Eduard Kummer; Johnson Reprint Corporation, New York, London, 1897 , vol. V.
- 2
- 2a S. Khazaaly , Modelling Electrophysiological Responses of Characeae to Salt and Osmotic Stress, Faculty of Science – School of Physics, The University of New South Wales, Sydney, 2010 .
- 2b T. Shimmen , T. Mimura , M. Kikuyama , M. Tazawa , Cell Struct., Funct. 1994 , 19 , 263 –278 .
- 2c G. Thiel , U. Homann , C. Plieth , J. Exp. Bot. 1997 , 48 , 609 –622 .
- 3 C. Plieth , H. Tabrizi , U.-P. Hansen , Physiol. Plant. 1994 , 91 , 205 –211 .
- 4 C. Plieth , U.-P. Hansen , J. Exp. Bot. 1996 , 47 , 1601 –1612 .
- 5 T. A. McConnaughey , R. H. Falk , Biol. Bull. 1991 , 180 , 185 –195 .
- 6
- 6a
A. Bulychev
, Plant Electrophysiology (Ed.: A. Volkov)
, Springer, Heidelberg, 2012
, p. 273–299.
10.1007/978-3-642-29119-7_12 Google Scholar
- 6b
K. Esser
, U. Lüttge
, W. Beyschlag
, J. Murata
, M. Braun
, I. Foissner
, H. Lühring
, H. Schubert
, G. Thiel
, Progress in Botany (Eds.: K. Esser
, U. Lüttge
, W. Beyschlag
, J. Murata)
, Springer, Berlin, 2007
, vol. 68
, p. 193–220.
10.1007/978-3-540-36832-8 Google Scholar
- 6c C. Plieth , U.-P. Hansen , Planta 1992 , 188 , 332 –339 .
- 6d I. Sørensen , J. K. C. Rose , J. J. Doyle , D. S. Domozych , W. G. T. Willats , Plant Signal. Behav. 2012 , 7 , 1 –3 .
- 6e M. Tazawa , T. Shimmen , Funct. Plant Biol. 2001 , 28 , 523 –539 .
- 6f M. Tazawa , T. Shimmmen , Plant Cell Physiol. 1980 , 21 , 1527 –1534 .
- 7 K. Arens , Protoplasma 1939 , 33 , 295 –300 .
- 8
- 8a
M. Beilby
, M. Bisson
, Plant Electrophysiology (Ed.: A. Volkov)
, Springer, Heidelberg, 2012
, p. 247–271.
10.1007/978-3-642-29119-7_11 Google Scholar
- 8b J. R. Smith , N. A. Walker , J. Membr. Biol. 1985 , 83 , 193 –205 .
- 9 D. G. Spear , J. K. Barr , C. E. Barr , J. Gen. Physiol. 1969 , 54 , 397 –414 .
- 10 W. J. Lucas , F. A. Smith , J. Exp. Bot. 1973 , 24 , 1 –14 .
- 11
- 11a J. Fisahn , U. P. Hansen , W. J. Lucas , Proc. Natl. Acad. Sci. USA 1992 , 89 , 3261 –3265 .
- 11b J. Fisahn , W. J. Lucas , Plant Physiol. 1991 , 95 , 1138 –1143 .
- 11c W. Lucas , Planta 1982 , 156 , 181 –192 .
- 12 H. Miedema , H. B. A. Prins , J. Exp. Bot. 1992 , 43 , 907 –914 .
- 13 T. T. Eighmy , L. S. Jahnke , W. R. Fagerberg , Plant Cell Environ. 1991 , 14 , 157 –165 .
- 14 L. W. Lévy , R. Strauss , C. R. Seances Acad. Sci., Ser. D 1975 , 280 , 1899 –1902 .
- 15
- 15a R. Harriss , A. Troup , Limnol. Oceanogr. 1970 , 15 , 702 –712 .
- 15b
S. Jiang
, D.-G. Kim
, J. Kim
, S.-O. Ko
, Environ. Eng. Res.
2010
, 15
, 183
–190
.
10.4491/eer.2010.15.4.183 Google Scholar
- 15c S. P. Sheldon , D. K. Skelly , J. Freshwater Ecol. 1990 , 5 , 475 –485 .
- 15d B. M. Tebo , J. R. Bargar , B. G. Clement , G. J. Dick , K. J. Murray , D. Parker , R. Verity , S. M. Webb , Annu. Rev. Earth Planet. Sci. 2004 , 32 , 287 –328 .
- 15e B. Toner , S. Fakra , M. Villalobos , T. Warwick , G. Sposito , Appl. Environ. Microbiol. 2005 , 71 , 1300 –1310 .
- 15f M. Villalobos , B. Toner , J. Bargar , G. Sposito , Geochim. Cosmochim. Acta 2003 , 67 , 2649 –2662 .
- 15g S. M. Webb , B. M. Tebo , J. R. Bargar , Am. Mineral. 2005 , 90 , 1342 –1357 .
- 16
- 16a S. M. Bromfield , Soil Res. 1976 , 14 , 95 –102 .
- 16b R. M. Crawford , P. F. Heap , Protoplasma 1978 , 96 , 361 –367 .
- 16c C. Hunt , Limnol. Oceanogr. 1983 , 28 , 302 –308 .
- 17 W. Bussler , Z. Pflanzenernaehr., Dueng., Bodenkd. 1958 , 81 , 225 –242 .
- 18
- 18a I. A. Abreu , D. E. Cabelli , Biochim. Biophys. Acta Proteins Proteomics 2010 , 1804 , 263 –274 .
- 18b J. Barber , Chem. Soc. Rev. 2009 , 38 , 185 –196 .
- 18c V. V. Barynin , M. M. Whittaker , S. V. Antonyuk , V. S. Lamzin , P. M. Harrison , P. J. Artymiuk , J. W. Whittaker , Structure 2001 , 9 , 725 –738 .
- 18d C. W. Cady , R. H. Crabtree , G. W. Brudvig , Coord. Chem. Rev. 2008 , 252 , 444 –455 .
- 18e W. Lubitz , E. J. Reijerse , J. Messinger , Energy Environ. Sci. 2008 , 1 , 15 –31 .
- 18f K. Mengel , Ernährung und Stoffwechsel der Pflanze, Gustav Fischer Verlag, Jena, Germany, 1991 .
- 18g R. Millaleo , M. Reyes-Diaz , A. G. Ivanov , M. L. Mora , M. Alberdi , J. Soil Sci. Plant Nutr. 2010 , 10 , 470 –481 .
- 18h Y. Umena , K. Kawakami , J.-R. Shen , N. Kamiya , Nature 2011 , 473 , 55 –60 .
- 18i A. J. Wu , J. E. Penner-Hahn , V. L. Pecoraro , Chem. Rev. 2004 , 104 , 903 –938 .
- 19
- 19a W. Bussler , Z. Pflanzenernaehr., Dueng., Bodenkd. 1958 , 81 , 256 –265 .
- 19b A. Webb , B. Dell , Proceedings of 11th International Plant Nutrition Colloquium, Kluwer Academic Publishers, Wageningen, The Netherlands, 1990 , p. 235–239.
- 20 J. Le Bot , M. J. Goss , M. J. G. P. R. Carvalho, M. L. Beusichem , E. A. Kirkby , Plant Soil 1990 , 124 , 205 –210 .
- 21 A. H. Wissemeier , Beziehung zwischen Mangantoleranz und Oxidation von Mangan, in: Blättern von Cowpea-Genotypen (Vigna unguiculata (L.) Walp.), University of Hohenheim, Germany, 1988 .
- 22 T. Horiguchi , Soil Sci. Plant Nutr. 1987 , 33 , 595 –606 .
- 23 A. Grundmeier , H. Dau , Biochim. Biophys. Acta Bioenerg. 2012 , 1817 , 88 –105 .
- 24
- 24a H. Dau , I. Zaharieva , M. Haumann , Curr. Opin. Chem. Biol. 2012 , 16 , 3 –10 .
- 24b A. Klauss , M. Haumann , H. Dau , Proc. Natl. Acad. Sci. USA 2012 , 109 , 16035 –40 .
- 25
- 25a H. Dau , M. Haumann , Coord. Chem. Rev. 2008 , 252 , 273 –295 .
- 25b
D. A. Pantazis
, W. Ames
, N. Cox
, W. Lubitz
, F. Neese
, Angew. Chem. 2012, 124
, 10074
–10079
; Angew. Chem. Int. Ed.
2012
, 51
, 9935
–9940
.
10.1002/ange.201204705 Google Scholar
- 26
- 26a
M. M. Najafpour
, T. Ehrenberg
, M. Wiechen
, P. Kurz
, Angew. Chem.
2010
, 122
, 2281
–2285
; Angew. Chem. Int. Ed.
2010
, 49
, 2233
–2237
.
10.1002/ange.200906745 Google Scholar
- 26b V. Y. Shafirovich , N. K. Khannanov , A. E. Shilov , J. Inorg. Biochem. 1981 , 15 , 113 –129 .
- 27 I. Zaharieva , M. M. Najafpour , M. Wiechen , M. Haumann , P. Kurz , H. Dau , Energy Environ. Sci. 2011 , 4 , 2400 –2408 .
- 28
- 28a Y. Gorlin , T. F. Jaramillo , J. Am. Chem. Soc. 2010 , 132 , 13612 –13614 .
- 28b R. K. Hocking , R. Brimblecombe , L.-Y. Chang , A. Singh , M. H. Cheah , C. Glover , W. H. Casey , L. Spiccia , Nat. Chem. 2011 , 3 , 461 –466 .
- 28c M. Wiechen , I. Zaharieva , H. Dau , P. Kurz , Chem. Sci. 2012 , 3 , 2330 –2339 .
- 28d I. Zaharieva , P. Chernev , M. Risch , K. Klingan , M. Kohlhoff , A. Fischer , H. Dau , Energy Environ. Sci. 2012 , 5 , 7081 –7089 .
- 29 N. Armaroli , V. Balzani , Energy for a Sustainable World, Wiley-VCH, Weinheim, Germany, 2011 .
- 30
- 30a G. Heinrich , L. Kies , W. Schröder , Phyton 1987 , 26 , 219 –225 .
- 30b U. Seydel , B. Lindner , Int. J. Quantum Chem. 1981 , 20 , 505 –512 .
- 31 J. R. Bargar , C. C. Fuller , M. A. Marcus , A. J. Brearley , M. Perez De la Rosa , S. M. Webb , W. A. Caldwell , Geochim. Cosmochim. Acta 2009 , 73 , 889 –910 .
- 32
- 32a V. A. Drits , B. Lanson , A. I. Gorshkov , A. Manceau , Am. Mineral. 1998 , 83 , 97 –118 .
- 32b J. Luo , Q. Zhang , A. Huang , O. Giraldo , S. L. Suib , Inorg. Chem. 1999 , 38 , 6106 –6113 .
- 32c D. A. McKeown , J. E. Post , Am. Mineral. 2001 , 86 , 701 –713 .
- 32d J. E. Post , Proc. Natl. Acad. Sci. USA 1999 , 96 , 3447 –3454 .
- 33a V. A. Drits , E. Silvester , A. I. Gorshkov , A. Manceau , Am. Mineral. 1997 , 82 , 946 –961 .
- 33b J. Luo , Q. Zhang , S. L. Suib , Inorg. Chem. 2000 , 39 , 741 –747 .
- 34a J. R. Bargar , B. M. Tebo , J. E. Villinski , Geochim. Cosmochim. Acta 2000 , 64 , 2737 –2749 .
- 34b S. Grangeon , B. Lanson , N. Miyata , Y. Tani , A. Manceau , Am. Mineral. 2010 , 95 , 1608 –1616 .
- 34c N. Keren , M. J. Kidd , J. E. Penner-Hahn , H. B. Pakrasi , Biochemistry 2002 , 41 , 15085 –92 .
- 34d I. Saratovsky , S. J. Gurr , M. A. Hayward , Geochim. Cosmochim. Acta 2009 , 73 , 3291 –3300 .
- 34e B. Toner , A. Manceau , S. M. Webb , G. Sposito , Geochim. Cosmochim. Acta 2006 , 70 , 27 –43 .
- 34f M. Villalobos , B. Lanson , A. Manceau , B. Toner , G. Sposito , Am. Mineral. 2006 , 91 , 489 –502 .
- 34g S. M. Webb , G. J. Dick , J. R. Bargar , B. M. Tebo , Proc. Natl. Acad. Sci. USA 2005 , 102 , 5558 –5563 .
- 34h S. M. Webb , B. M. Tebo , J. R. Bargar , Geomicrobiol. J. 2005 , 22 , 181 –193 .
- 34i M. Zhu , M. Ginder-Vogel , S. J. Parikh , X.-H. Feng , D. L. Sparks , Environ. Sci. Technol. 2010 , 44 , 4465 –4471 .
- 34j M. Zhu , M. Ginder-Vogel , D. L. Sparks , Environ. Sci. Technol. 2010 , 44 , 4472 –4478 .
- 35
- 35a H. Dau , P. Liebisch , M. Haumann , Anal. Bioanal. Chem. 2003 , 376 , 562 –583 .
- 35b G. N. George , B. Hedman , K. O. Hodgson , Nat. Struct. Biol. 1998 , 5 , 645 –647 .
- 35c J. E. Penner-Hahn , Coord. Chem. Rev. 1999 , 190–192, 1101 –1123 .
- 36 M. Grabolle , M. Haumann , C. Müller , P. Liebisch , H. Dau , J. Biol. Chem. 2006 , 281 , 4580 –4588 .
- 37a J. R. Bargar , B. M. Tebo , U. Bergamann , S. M. Webb , P. Glaetzel , V. Q. Chiu , M. Villalobos , Am. Mineral. 2005 , 90 , 143 –154 .
- 37b A.-C. Gaillot , D. Flot , V. A. Drits , A. Manceau , M. Burghammer , B. Lanson , Chem. Mater. 2003 , 15 , 4666 –4678 .
- 37c I. Saratovsky , P. G. Wightman , P. A. Pasten , J.-F. Gaillard , K. R. Poeppelmeier , J. Am. Chem. Soc. 2006 , 128 , 11188 –11198 .
- 37d T. G. Spiro , J. R. Bargar , G. Sposito , B. M. Tebo , Acc. Chem. Res. 2009 , 42 , 2 –9 .
- 38 W. F. Rüttinger , C. Campana , G. C. Dismukes , J. Am. Chem. Soc. 1997 , 119 , 6670 –6671 .
- 39
- 39a J. E. Post , D. L. Bish , Am. Mineral. 1988 , 73 , 861 –869 .
- 39b R. W. G. Wyckoff , Crystal Structures, Wiley, New York, 1963 .
- 40 J. E. Post , D. R. Veblen , Am. Mineral. 1990 , 75 , 477 –489 .
- 41 P. Kurz , G. Berggren , M. F. Anderlund , S. Styring , Dalton Trans. 2007 , 4258 –4261 .
- 42 C. R. Pottenger , D. C. Johnson , J. Polym. Sci. A 1970 , 8 , 301 –318 .
- 43 W. L. Lindsay , N. C. Brady , Adv. Agron. 1972 , 24 , 147 –186 .
- 44 T. Ducic , A. Polle , Braz. J. Plant Physiol. 2005 , 17 , 103 –112 .
- 45 T. Shimmen , E. Yokota , Curr. Opin. Cell Biol. 2004 , 16 , 68 –72 .
- 46 R. M. McCourt , C. F. Delwiche , K. G. Karol , Trends Ecol. Evol. 2004 , 19 , 661 –666 .
- 47 Y. Nishina , H. Hashimoto , N. Kimura , N. Miyata , T. Fujii , B. Ohtani , J. Takada , RSC Adv. 2012 , 2 , 6420 –6423 .
- 48 M. Wiechen , H.-M. Berends , P. Kurz , Dalton Trans. 2012 , 41 , 21 –31 .
- 49 K. Sauer , V. K. Yachandra , Proc. Natl. Acad. Sci. USA 2002 , 99 , 8631 –8636 .
- 50
- 50a H. J. Heinen , R. Wechsung , H. Vogt , F. Hillenkamp , R. Kaufmann , Biotechnische Umschau 1978 , 2 , 346 –354 .
- 50b G. Heinrich , J. Plant Physiol. 1989 , 133 , 770 –772 .
- 50c F. Hillenkamp , E. Unsöld , R. Kaufmann , R. Nitsche , Appl. Phys. 1975 , 8 , 341 –348 .
- 51
- 51a A. Erko , I. Zizak , Spectrochim. Acta Part B 2009 , 64 , 833 –848 .
- 51b A. Gupta , N. Darowski , I. Zizak , C. Meneghini , G. Schumacher , A. Erko , Spectrochim. Acta Part B 2007 , 62 , 622 –625 .
- 52
- 52a A. Erko , F. Schafers , A. Firsov , W. B. Peatman , W. Eberhardt , R. Signorato , Spectrochim. Acta Part B 2004 , 59 , 1543 –1548 .
- 52b K. Proost , L. Vincze , K. Janssens , N. Gao , E. Bulska , M. Schreiner , G. Falkenberg , X-ray Spectrom. 2003 , 32 , 215 –222 .
- 53 H. Schiller , J. Dittmer , L. Iuzzolino , W. Dörner , W. Meyer-Klaucke , V. A. Sole , H.-F. Nolting , H. Dau , Biochemistry 1998 , 37 , 7340 –7350 .
- 54 G. A. Truesdale , A. L. Downing , Nature 1954 , 173 , 1236 .