Syntheses and Applications of Malonamide Derivatives – A Minireview
Corresponding Author
Dr. Abiodun D. Aderibigbe
Department of Chemistry, Federal University of Technology Akure, P.M.B. 704, Akure, Ondo state, Nigeria
Search for more papers by this authorDr. David P. Day
São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
Search for more papers by this authorCorresponding Author
Dr. Abiodun D. Aderibigbe
Department of Chemistry, Federal University of Technology Akure, P.M.B. 704, Akure, Ondo state, Nigeria
Search for more papers by this authorDr. David P. Day
São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
Search for more papers by this authorGraphical Abstract
Malonamide derivatives have been known for over a century and found important applications across a broad range of chemical disciplines. Their synthesis from a range of starting materials has provided varied routes to access this sought-after class of compounds. This review looks to provide a critical analysis and most important advances to this field of synthetic chemistry, and as such, provide a toolbox of reactions for future researchers in this field.
Abstract
Malonamide derivatives are an important class of organic compounds utilized in an array of applications. As such, numerous research efforts have focused on ways to synthesize and decorate these molecules. This minireview is separated into sections focusing on syntheses of malonamide derivatives from key starting materials. Throughout this report, critical analysis of the routes to and applications of malonamide derivatives are documented, highlighting the adaptability across scientific fields.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
slct202004340-sup-0001-misc_information.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Fischer, A. Dilthey, Ber. Dtsch. Chem. Ges. 1902, 35, 844–856.
- 2For articles detailing malonamides used in medicinal chemistry studies, please see;
- 2aF. Gaudette, S. Raeppel, H. Nguyen, C. Beaulieu, I. Dupont, A. R. Macleod, J. M. Besterman, A. Vaisburg, Bioorg. Med. Chem. Lett. 2010, 20, 848–852;
- 2bT. Katagi, M. Aoki, M. Kashiwagi, K. Ohata, S. Kohno, T. Murata, T. Inoi, Chem. Pharm. Bull. 1985, 33, 4878–4888;
- 2cS. Nagashima, S. Akamatsu, E. Kawaminami, S. Kawazoe, T. Omagi, Y. Matsumoto, M. Okada, K. I. Suzuki, S. I. Tsukamoto, Chem. Pharm. Bull. 2001, 49, 1420–1432;
- 2dY. Ajisawa, M. Kitazawa, M. Uchida, M. Kobayashi, J. Pharm. Soc. Jpn. 1996, 116, 50–58;
- 2eJ. L. Vennerstrom Jr., T. J. Holmes Jr., J. Med. Chem. 1987, 30, 434–437.
- 3For articles detailing malonamides used in ion-detecting and binding studies;
- 3aC. Musikas, H. Hubert, Solvent Extr. Ion Exch. 1987, 5, 877–893;
- 3bC. Musikas, Inorg. Chim. Acta 1987, 140, 197–206;
- 3cC. Musikas, H. Hubert, Solvent Extr. Ion Exch. 1987, 5, 151–174;
- 3dC. Cuillerdier, C. Musikas, P. Hoel, L. Nigond, X. Vitart, Sep. Sci. Technol. 1991, 26, 1229–1244;
- 3eL. Nigond, C. Musikas, C. Cuillerdier, Solvent Extr. Ion Exch. 1994, 12, 261–296;
- 3fL. Nigond, C. Musikas, C. Cuillerdier, Solvent Extr. Ion Exch. 1994, 12, 297–323;
- 3gQ. Tian, A. Hughes, Hydrometallurgy 1994, 36, 79–94;
- 3hL. Spjuth, J. O. Liljenzin, M. Skalberg, M. J. Hudson, G. Y. S. Chan, M. G. B. Drew, M. Feaviour, P. B. Iveson, C. Madic, Radiochim. Acta 1997, 78, 39–46;
- 3iP. B. Iveson, M. G. B. Drew, M. J. Hudson, C. J. Madic, Chem. Soc., Dalton Trans. 1999, 3605–3610;
- 3jG. J. Lumetta, B. M. Rapko, P. A. Garza, B. P. Hay, R. D. Gilbertson, T. J. R. Weakley, J. E. Hutchison, J. Am. Chem. Soc. 2002, 124, 5644–5645;
- 3kC. Cuillerdier, C. Musikas, L. Nigond, Sep. Sci. Technol. 1993, 28, 155–175;
- 3lE. A. Mowafy, H. F. Aly, Solvent Extr. Ion Exch. 2002, 20, 177–194;
- 3mL. Spjuth, J. O. Liljenzin, M. J. Hudson, M. G. B. Drew, P. B. Iveson, C. Madic, Solvent Extr. Ion Exch. 2000, 18, 1–23;
- 3nL. Berthon, J. M. Morel, N. Zorz, C. Nicol, H. Virelizier, C. Madic, Sep. Sci. Technol. 2001, 36, 709–728;
- 3oP. K. Mohapatra, S. Sriram, V. K. Manchanda, L. P. Badheka, Sep. Sci. Technol. 2000, 35, 39–55.
- 4For articles detailing malonamides used as building blocks in organic synthesis, please see;
- 4aL. Zhang, D. Wang, L. Zhao, M. Wang, J. Org. Chem. 2012, 77, 5584–5591;
- 4bK. Yamamoto, M. Kuriyama, O. Onomura , Acc. Chem. Res. 2020, 53, 105–120;
- 4cX. Weiqing, Z. Zhiwei, Z. Weiwei, M. Dawei, Chin. J. Org. Chem. 2013, 33, 869–876;
- 4dA. Porey, S. Santra, J. Guin, J. Org. Chem. 2019, 84, 5313–5327.
- 5
- 5aData obtained from a Web of Science literature search as of May 2020; For a general mechanism of amide formation from esters, please see;
- 5bJ. Clayden, N. Greeves, S. Warren in Organic Chemistry, 2nd Ed. Oxford University Press, Oxford, 2012, 204.
- 6For reviews on the applications of malonamides, please see;
- 6aV. K. Manchanda, P. N. Pathak, Sep. Purif. Technol. 2004, 35, 85–103;
- 6bM. J. Hudson, F. W. Lewis, L. M. Harwood, Strat. and Tact. in Org. Syn. 2013, 9, 177–202.
- 7Physical properties of selected malonamide derivatives
- 7aSDS data from www.sigmaaldrich.com/ Accessed: 25/10/2020;
- 7bD. J. Brown, J. Chem. Soc. 1956, P2312-14 CAPLUS;
- 7cM. D. Ferretti, A. T. Neto, A. F. Morel, T. S. Kaufman, E. L. Larghi, Eur. J. Med. Chem. 2014, 81, 253–266.
- 8
- 8aK. C. Bailey, P. Roy, Irish Acad. B. 1930, 39, 567–573;
- 8bC. Slobutsky, L. F. Audrieth, R. W. Campbell, Proc. Natl. Acad. Sci. USA 1937, 23, 611–615.
- 9M. S. Islam, A. Barakat, A. M. Al-Majid, H. A. Ghabbour, A. F. M. Motiur Rahman, K. Javaid, R. Imad, S. Yousuf, M. Iqbal Choudhary, Bioorg. Med. Chem. 2016, 24, 1675–1682.
- 10Formula used to determine atom economies was obtained from: RSC Atom Economy, Available at: https://www.rsc.org/Education/Teachers/Resources/Inspirational/resources/6.6.1.pdf. Accessed on: 25/10/2020.
- 11J.-Y. Goujon, M. Shipman, Tetrahedron Lett. 2002, 43, 9573–9576.
- 12Guide on solvent classification from a sustainability perspective was obtained from: C. M. Alder, J. D. Kayler, R. K. Henderson, A. M. Redman, L. Shukla, L. E. Shuster, H. F. Sneddon, Green Chem. 2016, 18, 3879–3890.
- 13G. Y. S. Chan, M. G. B. Drew, M. J. Hudson, P. B. Iveson, J.-O. Liljenzin, M. Skålberg, L. Spjuth, C. Madic, J. Chem. Soc. Dalton Trans. 1997, 649–660.
- 14M. C. Costa, A. Carvalho, A. Uryga, A. P. Paiva, Solvent Extr. Ion Exch. 2003, 21, 653–686.
- 15A. Daubinet, P. T. Kaye, Synth. Commun. 2002, 32, 3207–3217.
- 16A. B. Patil, V. S. Shinde, P. Pathak, P. K. Mohapatra, Sep. Purif. Technol. 2015, 145, 83–91.
- 17K. Molčanov, T. Portada, V. Čaplar, M. Jokić, J. Makarević, N. Šijakovic Vujičić, Z. Štefanić, M. Žinić, B. Kojić-Prodić, Struct. Chem. 2013, 24, 597–609.
- 18
- 18aV. Čaplar, Z. Raza, D. Katalenić, M. Žinic Croat. Chem. Acta. 2003, 76, 23–36;
- 18bR. E. Lowenthal, A. Abiko, S. Masamune, Tetrahedron Lett. 1990, 3, 6005–6008.
- 19For reviews highlighting the use of coupling reagents in amide/peptide synthesis, please see;
- 19aC. A. G. N. Montalbetti, V. Falque, Tetrahedron 2005, 61, 10827–10852;
- 19bJ. R. Dunetz, J. Magano, G. A. Weisenburger, Org. Process Res. Dev. 2016, 20, 140–177;
- 19cF. Albericio, A. El-Faham, Org. Process Res. Dev. 2018, 22, 760–772.
- 20J. U. Peters, G. Galley, H. Jacobsen, C. Czech, P. David-Pierson, E. A. Kitas, L. Ozmen, Bioorg. Med. Chem. Lett. 2007, 17, 5918–5923.
- 21H. F. Chow, K. N. Lau, M. C. Chan, Chem. Eur. J. 2011, 17, 8395–8403.
- 22G. H. Chu, M. Gu, J. A. Cassel, S. Belanger, T. M. Graczyk, R. N. DeHaven, N. Conway-James, M. Koblish, P. J. Little, D. L. DeHaven-Hudkins, R. E. Dolle, Bioorg. Med. Chem. Lett. 2007, 17, 1951–1955.
- 23J.-C. Broudic, O. Conocar, J. J. E. Moreau, D. Meyer, M. W. C. Man, J. Mater. Chem. 1999, 9, 2283–2285.
- 24D. Jańczewski, D. N. Reinhoudt, W. Verboom, E. Malinowska, M. Pietrzak, C. Hill, C. Allignol, New J. Chem. 2007, 31, 109–120.
- 25S. K. Lee, H. Kim, S. Jang, J. Kang, Tetrahedron Lett. 2011, 52, 1977–1980.
- 26J.-C. Su, Y.-T. Huang, C.-S. Chen, H.-C. Chiu, C.-W. Shiau, Molecules 2018, 23, 27.
- 27M. Jokić, V. Čaplar, T. Portada, J. Makarević, N. Šijakovic Vujičić, M. Žinić, Tetrahedron Lett. 2009, 50, 509–513.
- 28Q.-B. Li, M. Liao, Q. Liu, T. Feng, Z.-Y. Xu, C.-H. Rui, S.-Z. Liu, Molecules 2019, 24, 562.
- 29T. Moriuchi-Kawakami, K. Kawata, S. Nakamura, Y. Koyama, Y. Shibutani, Tetrahedron 2014, 70, 9805–9813.
- 30A. D. Aderibigbe, A. J. Clark, Chem. Pap. 2020, doi: https://doi.org/10.1007/s11696-020-01307-x.
- 31E. Pair, T. Cadart, V. Levacher, J.-F. Brière, ChemCatChem 2016, 8, 1882–1890.
- 32J. Gerencsér, G. Dormán, F. Darvas, QSAR Comb. Sci. 2006, 25, 439–448.
- 33A. Shaabani, H. Mofakham, A. Maleki, F. Hajishaabanha, J. Comb. Chem. 2010, 12, 630–632.
- 34A. Rahmati, T. Kenarkoohi, M. Ahmadi-Varzaneh, Mol. Diversity 2013, 17, 619–625.
- 35T. Kenarkoohi, A. Rahmati, J. Mol. Liq. 2019, 276, 714–720.
- 36E. Vessally, R. Hosseinzadeh-Khanmiri, M. Babazadeh, E. Ghorbani-Kalhor, L. Edjlali, Appl. Organomet. Chem. 2016, 31, e3603.
- 37A. Kumar, M. M. Singh, Anti-Corros. Methods Mater. 1993, 40, 4–7.
- 38Z.-L. Wu, Z.-Y. Li, J. Org. Chem. 2003, 68, 2479–2482.